Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(18): 182502, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759198

ABSTRACT

The observation of neutrinoless double-beta (0νßß) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νßß experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νßß-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.

2.
Phys Rev Lett ; 127(24): 242502, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951798

ABSTRACT

Starting from chiral nuclear interactions, we evaluate the contribution of the leading-order contact transition operator to the nuclear matrix element (NME) of neutrinoless double-beta decay, assuming a light Majorana neutrino-exchange mechanism. The corresponding low-energy constant (LEC) is determined by fitting the transition amplitude of the nn→ppe^{-}e^{-} process to a recently proposed synthetic datum. We examine the dependence of the amplitude on similarity renormalization group scale and chiral expansion order of the nuclear interaction, finding that both dependences can be compensated to a large extent by readjusting the LEC. We evaluate the contribution of both the leading-order contact operator and standard long-range operator to the neutrinoless double-beta decays in the light nuclei ^{6,8}He and the candidate nucleus ^{48}Ca. Our results provide the first clear demonstration that the contact term enhances the NME in calculations with commonly used chiral two- plus three-nucleon interactions. In the case of ^{48}Ca, for example, the NME obtained with the EM(1.8/2.0) interaction is enhanced from 0.61 to 0.87(4), where the uncertainty is propagated from the synthetic datum.

3.
Phys Rev Lett ; 124(23): 232501, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603157

ABSTRACT

Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The approach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of ^{48}Ca to ^{48}Ti, and find it to have the value 0.61, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as ^{76}Ge, ^{130}Te, and ^{136}Xe.

4.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481255

ABSTRACT

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

5.
Phys Rev Lett ; 118(3): 032502, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157334

ABSTRACT

We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3N) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and sd shells. Finally, we address the 1^{+}/3^{+} inversion problem in ^{22}Na and ^{46}V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

6.
Phys Rev Lett ; 117(5): 052501, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517768

ABSTRACT

We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

7.
Phys Rev Lett ; 113(14): 142501, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25325636

ABSTRACT

We present the first ab initio construction of valence-space Hamiltonians for medium-mass nuclei based on chiral two- and three-nucleon interactions using the in-medium similarity renormalization group. When applied to the oxygen isotopes, we find experimental ground-state energies are well reproduced, including the flat trend beyond the drip line at (24)O. Similarly, natural-parity spectra in (21,22,23,24)O are in agreement with experiment, and we present predictions for excited states in (25,26)O. The results exhibit a weak dependence on the harmonic-oscillator basis parameter and reproduce spectroscopy within the standard sd valence space.

8.
Phys Rev Lett ; 110(24): 242501, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165916

ABSTRACT

We formulate the in-medium similarity renormalization group (IM-SRG) for open-shell nuclei using a multireference formalism based on a generalized Wick theorem introduced in quantum chemistry. The resulting multireference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of all even oxygen isotopes with chiral nucleon-nucleon and three-nucleon interactions, from the proton to the neutron drip lines. We obtain an excellent reproduction of experimental ground-state energies with quantified uncertainties, which is validated by results from the importance-truncated no-core shell model and the coupled cluster method. The agreement between conceptually different many-body approaches and experiment highlights the predictive power of current chiral two- and three-nucleon interactions, and establishes the MR-IM-SRG as a promising new tool for ab initio calculations of medium-mass nuclei far from shell closures.

SELECTION OF CITATIONS
SEARCH DETAIL
...