Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; : e2350825, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650034

ABSTRACT

Cyclosporin A is a well-established immunosuppressive drug used to treat or prevent graft-versus-host disease, the rejection of organ transplants, autoimmune disorders, and leukemia. It exerts its immunosuppressive effects by inhibiting calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT), thus preventing its nuclear entry and suppressing T cell activation. Here we report an unexpected immunostimulatory effect of cyclosporin A in activating the mammalian target of rapamycin complex 1 (mTORC1), a crucial metabolic hub required for T cell activation. Through screening a panel of tool compounds known to regulate mTORC1 activation, we found that cyclosporin A activated mTORC1 in CD8+ T cells in a 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB/AKT)-dependent manner. Mechanistically, cyclosporin A inhibited the calcineurin-mediated AKT dephosphorylation, thereby stabilizing mTORC1 signaling. Cyclosporin A synergized with mTORC1 pathway inhibitors, leading to potent suppression of proliferation and cytokine production in CD8+ T cells and an increase in the killing of acute T cell leukemia cells. Consequently, relying solely on CsA is insufficient to achieve optimal therapeutic outcomes. It is necessary to simultaneously target both the calcineurin-NFAT pathway and the mTORC1 pathway to maximize therapeutic efficacy.

2.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640251

ABSTRACT

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Subject(s)
Neoplasms , Sphingosine , T-Lymphocytes, Regulatory , Programmed Cell Death 1 Receptor/metabolism , Serine/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Tumor Microenvironment
3.
Nat Immunol ; 24(11): 1921-1932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813964

ABSTRACT

The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.


Subject(s)
Ketoglutaric Acids , NAD , Humans , Oxidation-Reduction , NAD/metabolism , Ketoglutaric Acids/metabolism , Ammonia , Malates/metabolism , CD8-Positive T-Lymphocytes/metabolism , Persistent Infection , Antiviral Agents
4.
Eur J Immunol ; 53(1): e2149400, 2023 01.
Article in English | MEDLINE | ID: mdl-36263815

ABSTRACT

While the immunosuppressive function of regulatory T (Treg) cells has been extensively studied, their immune-supportive roles have been less well investigated. Using a lymphocytic choriomeningitis virus (LCMV) Armstrong infection mouse model, we found that Treg cell-derived interleukin (IL)-15 is required for long-term maintenance of the KLRG1+ IL-7Rα- CD62L- terminal effector memory CD8+ T (tTEM) cell subset, but dispensable for the suppressive function of Treg cells themselves. In contrast, deletion of Il15 from other sources, including myeloid cells and muscles, did not affect the composition of the memory CD8+ T cell pool. Our findings identify Treg cells as an essential IL-15 source maintaining tTEM cells and suggest that Treg cells promote the diversity of immunological memory.


Subject(s)
Lymphocytic Choriomeningitis , T-Lymphocytes, Regulatory , Mice , Animals , Lymphocytic choriomeningitis virus , Immunologic Memory , Interleukin-15 , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Interleukin-2
5.
Int J Cancer ; 151(5): 797-808, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35499751

ABSTRACT

Memory CD8+ T cells mature after antigen clearance and ultimately express CD8 protein at levels higher than those detected in effector CD8+ T cells. However, it is not clear whether engagement of CD8 in the absence of antigenic stimulation will result in the functional activation of T cells. Here, we found that CD8 antibody-mediated activation of memory CD8+ T cells triggered T cell receptor (TCR) downstream signaling, enhanced T cell-mediated cytotoxicity and promoted effector cytokine production in a glucose- and glutamine-dependent manner. Furthermore, pretreatment of memory CD8+ T cells with an agonistic anti-CD8 antibody enhanced their tumoricidal activity in vitro and in vivo. From these studies, we conclude that CD8 agonism activates glucose and glutamine metabolism in memory T cells and enhances the efficacy of memory T cell-based cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Glutamine , Glucose/metabolism , Glutamine/metabolism , Humans , Immunologic Memory , Lymphocyte Activation , Memory T Cells , Receptors, Antigen, T-Cell , Signal Transduction
6.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622904

ABSTRACT

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , RGS Proteins/immunology , Animals , Cell Differentiation , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice
7.
Sci Adv ; 6(24): eaba3458, 2020 06.
Article in English | MEDLINE | ID: mdl-32582853

ABSTRACT

CD8+ T cells become functionally impaired or "exhausted" in chronic infections, accompanied by unwanted body weight reduction and muscle mass loss. Whether muscle regulates T cell exhaustion remains incompletely understood. We report that mouse skeletal muscle increased interleukin (IL)-15 production during LCMV clone 13 chronic infection. Muscle-specific ablation of Il15 enhanced the CD8+ T cell exhaustion phenotype. Muscle-derived IL-15 was required to maintain a population of CD8+CD103+ muscle-infiltrating lymphocytes (MILs). MILs resided in a less inflamed microenvironment, expressed more T cell factor 1 (Tcf1), and had higher proliferative potential than splenic T cells. MILs differentiated into functional effector T cells after reentering lymphoid tissues. Increasing muscle mass via muscle-specific inhibition of TGFß signaling enhanced IL-15 production and antiviral CD8+ T cell responses. We conclude that skeletal muscle antagonizes T cell exhaustion by protecting T cell proliferative potential from inflammation and replenishing the effector T cell progeny pool in lymphoid organs.

8.
Cell Rep ; 31(1): 107484, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268106

ABSTRACT

T cell factor 1 (Tcf1) promotes the central memory CD8+ T (TCM) cell differentiation and stemness in lymphoid tissues after systemic infections. It remains unclear whether Tcf1 regulates the CD103high tissue-resident memory CD8+ T (TRM) cell formation in non-lymphoid tissues after mucosal infections. We find that Tcf1 is progressively decreased during lung TRM cell formation. Abrogation of transforming growth factor ß (TGF-ß) signaling is associated with a loss of CD103+ and reciprocal gain of Tcf1+ cells among TRM precursors in vivo. T-cell-specific ablation of Tcf7 enhances CD103 protein expression in TRM cells and precursors and increases TRM cell numbers after primary and secondary infections. Tcf1 directly binds to the Itgae (encoding CD103) locus and partly inhibits TGF-ß-induced CD103 expression. Our study suggests that memory T cell tissue residency and homeostatic proliferation are reciprocally regulated by Tcf1. Tcf1 may play either immunosupportive or immunosuppressive roles in CD8+ T cells, depending on systemic or mucosal infections.


Subject(s)
Antigens, CD/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Integrin alpha Chains/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/physiology , Cell Differentiation/genetics , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunologic Memory/genetics , Immunologic Memory/immunology , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Lung/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...