Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Lancet Microbe ; 4(11): e903-e912, 2023 11.
Article in English | MEDLINE | ID: mdl-37769676

ABSTRACT

BACKGROUND: Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS: To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS: Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION: Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING: The US Centers for Disease Control and Prevention.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/therapy , Influenza, Human/prevention & control , Cross-Sectional Studies , Influenza A Virus, H3N2 Subtype , Influenza B virus , Hospitalization
2.
PLoS One ; 18(3): e0282422, 2023.
Article in English | MEDLINE | ID: mdl-36862756

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), is spread primarily through exposure to respiratory droplets from close contact with an infected person. To inform prevention measures, we conducted a case-control study among Colorado adults to assess the risk of SARS-CoV-2 infection from community exposures. METHODS: Cases were symptomatic Colorado adults (aged ≥18 years) with a positive SARS-CoV-2 test by reverse transcription-polymerase chain reaction (RT-PCR) reported to Colorado's COVID-19 surveillance system. From March 16 to December 23, 2021, cases were randomly selected from surveillance data ≤12 days after their specimen collection date. Cases were matched on age, zip code (urban areas) or region (rural/frontier areas), and specimen collection date with controls randomly selected among persons with a reported negative SARS-CoV-2 test result. Data on close contact and community exposures were obtained from surveillance and a survey administered online. RESULTS: The most common exposure locations among all cases and controls were place of employment, social events, or gatherings and the most frequently reported exposure relationship was co-worker or friend. Cases were more likely than controls to work outside the home (adjusted odds ratio (aOR) 1.18, 95% confidence interval (CI): 1.09-1.28) in industries and occupations related to accommodation and food services, retail sales, and construction. Cases were also more likely than controls to report contact with a non-household member with confirmed or suspected COVID-19 (aOR 1.16, 95% CI: 1.06-1.27). CONCLUSIONS: Understanding the settings and activities associated with a higher risk of SARS-CoV-2 infection is essential for informing prevention measures aimed at reducing the transmission of SARS-CoV-2 and other respiratory diseases. These findings emphasize the risk of community exposure to infected persons and the need for workplace precautions in preventing ongoing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Colorado/epidemiology , Accommodation, Ocular
4.
MMWR Morb Mortal Wkly Rep ; 71(38): 1216-1219, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36136939

ABSTRACT

The risk for monkeypox transmission to health care personnel (HCP) caring for symptomatic patients is thought to be low but has not been thoroughly assessed in the context of the current global outbreak (1). Monkeypox typically spreads through close physical (often skin-to-skin) contact with lesions or scabs, body fluids, or respiratory secretions of a person with an active monkeypox infection. CDC currently recommends that HCP wear a gown, gloves, eye protection, and an N95 (or higher-level) respirator while caring for patients with suspected or confirmed monkeypox to protect themselves from infection† (1,2). The Colorado Department of Public Health and Environment (CDPHE) evaluated HCP exposures and personal protective equipment (PPE) use in health care settings during care of patients who subsequently received a diagnosis of Orthopoxvirus infection (presumptive monkeypox determined by a polymerase chain reaction [PCR] DNA assay) or monkeypox (real-time PCR assay and genetic sequencing performed by CDC). During May 1-July 31, 2022, a total of 313 HCP interacted with patients with subsequently diagnosed monkeypox infections while wearing various combinations of PPE; 23% wore all recommended PPE during their exposures. Twenty-eight percent of exposed HCP were considered to have had high- or intermediate-risk exposures and were therefore eligible to receive postexposure prophylaxis (PEP) with the JYNNEOS vaccine§; among those, 48% (12% of all exposed HCP) received the vaccine. PPE use varied by facility type: HCP in sexually transmitted infection (STI) clinics and community health centers reported the highest adherence to recommended PPE use, and primary and urgent care settings reported the lowest adherence. No HCP developed a monkeypox infection during the 21 days after exposure. These results suggest that the risk for transmission of monkeypox in health care settings is low. Infection prevention training is important in all health care settings, and these findings can guide future updates to PPE recommendations and risk classification in health care settings.


Subject(s)
Infectious Disease Transmission, Patient-to-Professional , Mpox (monkeypox) , Colorado/epidemiology , Delivery of Health Care , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Personal Protective Equipment
5.
Foodborne Pathog Dis ; 19(10): 713-715, 2022 10.
Article in English | MEDLINE | ID: mdl-36149750

ABSTRACT

During September 2019, public health authorities in El Paso County, Colorado, were notified of four patients who had presented to nearby hospitals with clinical features consistent with botulism, a paralytic illness caused by botulinum neurotoxin. One patient died soon after presentation; the other three patients required intensive care but recovered after receiving botulism antitoxin. Botulinum toxin type A was detected in serum from all patients. On further investigation, all four patients had shared a meal that included commercially prepared roasted potatoes from an individual package without refrigeration instructions that had been left unrefrigerated for 15 d. Storage of the product at ambient temperature likely allowed botulism spores to produce botulinum toxin, resulting in severe illness and death. The manufacturer improved labeling in response to this outbreak. Public health officials should consider unrefrigerated potato products as a potential source of botulism; clinicians should consider botulism as a possible cause of paralytic illness.


Subject(s)
Botulinum Toxins, Type A , Botulism , Clostridium botulinum , Solanum tuberosum , Humans , Botulism/diagnosis , Botulism/epidemiology , Botulism/etiology , Botulinum Antitoxin , Colorado/epidemiology , Disease Outbreaks
6.
Public Health Rep ; 137(1): 128-136, 2022.
Article in English | MEDLINE | ID: mdl-34752156

ABSTRACT

OBJECTIVES: The number of SARS-CoV-2 infections is underestimated in surveillance data. Various approaches to assess the seroprevalence of antibodies to SARS-CoV-2 have different resource requirements and generalizability. We estimated the seroprevalence of antibodies to SARS-CoV-2 in Denver County, Colorado, via a cluster-sampled community survey. METHODS: We estimated the overall seroprevalence of antibodies to SARS-CoV-2 via a community seroprevalence survey in Denver County in July 2020, described patterns associated with seroprevalence, and compared results with cumulative COVID-19 incidence as reported to the health department during the same period. In addition, we compared seroprevalence as assessed with a temporally and geographically concordant convenience sample of residual clinical specimens from a commercial laboratory. RESULTS: Based on 404 specimens collected through the community survey, 8.0% (95% CI, 3.9%-15.7%) of Denver County residents had antibodies to SARS-CoV-2, an infection rate of about 7 times that of the 1.1% cumulative reported COVID-19 incidence during this period. The estimated infection-to-reported case ratio was highest among children (34.7; 95% CI, 11.1-91.2) and males (10.8; 95% CI, 5.7-19.3). Seroprevalence was highest among males of Black race or Hispanic ethnicity and was associated with previous COVID-19-compatible illness, a previous positive SARS-CoV-2 test result, and close contact with someone who had confirmed SARS-CoV-2 infection. Testing of 1598 residual clinical specimens yielded a seroprevalence of 6.8% (95% CI, 5.0%-9.2%); the difference between the 2 estimates was 1.2 percentage points (95% CI, -3.6 to 12.2 percentage points). CONCLUSIONS: Testing residual clinical specimens provided a similar seroprevalence estimate yet yielded limited insight into the local epidemiology of COVID-19 and might be less representative of the source population than a cluster-sampled community survey. Awareness of the limitations of various sampling strategies is necessary when interpreting findings from seroprevalence assessments.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , COVID-19/immunology , Child , Child, Preschool , Colorado/epidemiology , Female , Humans , Infant , Male , Middle Aged , SARS-CoV-2 , Seroepidemiologic Studies , Sex Factors , Sociodemographic Factors , Young Adult
7.
MMWR Morb Mortal Wkly Rep ; 70(37): 1284-1290, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529637

ABSTRACT

COVID-19 vaccine breakthrough infection surveillance helps monitor trends in disease incidence and severe outcomes in fully vaccinated persons, including the impact of the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19. Reported COVID-19 cases, hospitalizations, and deaths occurring among persons aged ≥18 years during April 4-July 17, 2021, were analyzed by vaccination status across 13 U.S. jurisdictions that routinely linked case surveillance and immunization registry data. Averaged weekly, age-standardized incidence rate ratios (IRRs) for cases among persons who were not fully vaccinated compared with those among fully vaccinated persons decreased from 11.1 (95% confidence interval [CI] = 7.8-15.8) to 4.6 (95% CI = 2.5-8.5) between two periods when prevalence of the Delta variant was lower (<50% of sequenced isolates; April 4-June 19) and higher (≥50%; June 20-July 17), and IRRs for hospitalizations and deaths decreased between the same two periods, from 13.3 (95% CI = 11.3-15.6) to 10.4 (95% CI = 8.1-13.3) and from 16.6 (95% CI = 13.5-20.4) to 11.3 (95% CI = 9.1-13.9). Findings were consistent with a potential decline in vaccine protection against confirmed SARS-CoV-2 infection and continued strong protection against COVID-19-associated hospitalization and death. Getting vaccinated protects against severe illness from COVID-19, including the Delta variant, and monitoring COVID-19 incidence by vaccination status might provide early signals of changes in vaccine-related protection that can be confirmed through well-controlled vaccine effectiveness (VE) studies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
8.
Clin Infect Dis ; 73(6): 1110-1112, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33714995

ABSTRACT

We evaluated whether Denver neighborhoods with elevated rates of adult hospitalizations for laboratory-confirmed influenza had lower adult coverage with influenza vaccine. Overall vaccine coverage was low. Hospitalization rates were associated with demographic and socioeconomic characteristics. Active immunization of at-risk neighborhoods may be necessary to address disparities in influenza hospitalization rates.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Hospitalization , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Laboratories , Vaccination
9.
Emerg Infect Dis ; 27(2): 385-395, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33496225

ABSTRACT

To improve recognition of coronavirus disease (COVID-19) and inform clinical and public health guidance, we randomly selected 600 COVID-19 case-patients in Colorado. A telephone questionnaire captured symptoms experienced, when symptoms occurred, and how long each lasted. Among 128 hospitalized patients, commonly reported symptoms included fever (84%), fatigue (83%), cough (73%), and dyspnea (72%). Among 236 nonhospitalized patients, commonly reported symptoms included fatigue (90%), fever (83%), cough (83%), and myalgia (74%). The most commonly reported initial symptoms were cough (21%-25%) and fever (20%-25%). In multivariable analysis, vomiting, dyspnea, altered mental status, dehydration, and wheezing were significantly associated with hospitalization, whereas rhinorrhea, headache, sore throat, and anosmia or ageusia were significantly associated with nonhospitalization. General symptoms and upper respiratory symptoms occurred earlier in disease, and anosmia, ageusia, lower respiratory symptoms, and gastrointestinal symptoms occurred later. Symptoms should be considered alongside other epidemiologic factors in clinical and public health decisions regarding potential COVID-19 cases.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Inpatients/statistics & numerical data , Outpatients/statistics & numerical data , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Colorado/epidemiology , Cough/epidemiology , Cough/virology , Disease Progression , Dyspnea/epidemiology , Dyspnea/virology , Fatigue/epidemiology , Fatigue/virology , Female , Fever/epidemiology , Fever/virology , Humans , Infant , Male , Middle Aged , Myalgia/epidemiology , Myalgia/virology , Symptom Assessment , Young Adult
10.
MMWR Morb Mortal Wkly Rep ; 69(43): 1576-1583, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33119554

ABSTRACT

Health care personnel (HCP) can be exposed to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), both within and outside the workplace, increasing their risk for infection. Among 6,760 adults hospitalized during March 1-May 31, 2020, for whom HCP status was determined by the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), 5.9% were HCP. Nursing-related occupations (36.3%) represented the largest proportion of HCP hospitalized with COVID-19. Median age of hospitalized HCP was 49 years, and 89.8% had at least one underlying medical condition, of which obesity was most commonly reported (72.5%). A substantial proportion of HCP with COVID-19 had indicators of severe disease: 27.5% were admitted to an intensive care unit (ICU), 15.8% required invasive mechanical ventilation, and 4.2% died during hospitalization. HCP can have severe COVID-19-associated illness, highlighting the need for continued infection prevention and control in health care settings as well as community mitigation efforts to reduce transmission.


Subject(s)
Coronavirus Infections/therapy , Health Personnel/statistics & numerical data , Hospitalization/statistics & numerical data , Pneumonia, Viral/therapy , Adolescent , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , United States/epidemiology , Young Adult
11.
Prev Med ; 139: 106184, 2020 10.
Article in English | MEDLINE | ID: mdl-32615128

ABSTRACT

The burden of influenza in rural areas is largely unstudied. Rural populations may be vulnerable yet isolated from circulating virus. Laboratory-confirmed influenza hospitalizations in rural Colorado census tracts over eight influenza seasons were inconsistently distributed across seasons. Rural rates were, on average, lower than urban rates. Race, ethnicity, poverty, health insurance coverage, and distance from a hospital accounted for rate differences. Our interpretation is: 1) influenza regularly circulates in urban areas and inconsistently spreads to rural areas, 2) demographic and socioeconomic factors drive morbidity in exposed populations, and 3) public health interventions targeting high-risk urban census tracts may be beneficial.


Subject(s)
Influenza, Human , Rural Population , Censuses , Colorado/epidemiology , Hospitalization , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Laboratories , Seasons , Urban Population
12.
MMWR Morb Mortal Wkly Rep ; 69(18)2020 May 08.
Article in English | MEDLINE | ID: mdl-32379731

ABSTRACT

Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4).


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Food-Processing Industry , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Humans , Meat , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Poultry , United States/epidemiology
13.
Influenza Other Respir Viruses ; 14(2): 111-121, 2020 03.
Article in English | MEDLINE | ID: mdl-31702114

ABSTRACT

BACKGROUND: National estimates of influenza burden may not reflect state-level influenza activity, and local surveillance may not capture the full burden of influenza. METHODS: To provide state-level information about influenza burden, we estimated excess pneumonia and influenza (P&I) and respiratory and circulatory (R&C) hospitalizations and deaths in Colorado from local hospital discharge records, death certificates, and influenza virus surveillance using negative binomial models. RESULTS: From July 2007 to June 2016, influenza was associated with an excess of 17 911 P&I hospitalizations (95%CI: 15 227, 20 354), 30 811 R&C hospitalizations (95%CI: 24 344, 37 176), 1,064 P&I deaths (95%CI: 757, 1298), and 3828 R&C deaths (95%CI: 2060, 5433). There was a large burden of influenza A(H1N1) among persons aged 0-64 years, with high median seasonal rates of excess hospitalization among persons aged 0-4 years. Persons aged ≥65 years experienced the largest numbers and highest median seasonal rates of excess hospitalization and death associated with influenza A (H3N2). The burden of influenza B was generally lower, with elevated median seasonal rates of excess hospitalization among persons aged 0-4 years and ≥65 years. CONCLUSIONS: These findings complement existing influenza surveillance. Periodic state-level estimates of influenza disease burden may be useful for setting state public health priorities and planning prevention and control initiatives.


Subject(s)
Influenza, Human/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Colorado/epidemiology , Female , Hospitalization , Humans , Infant , Infant, Newborn , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Male , Middle Aged , Mortality , Pneumonia/epidemiology , Population Surveillance , Public Health , Young Adult
14.
Open Forum Infect Dis ; 6(7)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31363771

ABSTRACT

BACKGROUND: Rates of influenza hospitalizations differ by age, but few data are available regarding differences in laboratory-confirmed rates among adults aged ≥65 years. METHODS: We evaluated age-related differences in influenza-associated hospitalization rates, clinical presentation, and outcomes among 19 760 older adults with laboratory-confirmed influenza at 14 FluSurv-NET sites during the 2011-2012 through 2014-2015 influenza seasons using 10-year age groups. RESULTS: There were large stepwise increases in the population rates of influenza hospitalization with each 10-year increase in age. Rates ranged from 101-417, 209-1264, and 562-2651 per 100 000 persons over 4 influenza seasons in patients aged 65-74 years, 75-84 years, and ≥85 years, respectively. Hospitalization rates among adults aged 75-84 years and ≥85 years were 1.4-3.0 and 2.2-6.4 times greater, respectively, than rates for adults aged 65-74 years. Among patients hospitalized with laboratory-confirmed influenza, there were age-related differences in demographics, medical histories, and symptoms and signs at presentation. Compared to hospitalized patients aged 65-74 years, patients aged ≥85 years had higher odds of pneumonia (aOR, 1.2; 95% CI, 1.0-1.3; P = .01) and in-hospital death or transfer to hospice (aOR, 2.1; 95% CI, 1.7-2.6; P < .01). CONCLUSIONS: Age-related differences in the incidence and severity of influenza hospitalizations among adults aged ≥65 years can inform prevention and treatment efforts, and data should be analyzed and reported using additional age strata.

15.
Foodborne Pathog Dis ; 8(10): 1131-3, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21657937

ABSTRACT

OBJECTIVES: In summer 2009, the Utah Department of Health investigated an outbreak of Shiga-toxigenic Escherichia coli (STEC) O157:H7 (O157) illness associated with attendance at multiple rodeos. MATERIALS AND METHODS: Patients were interviewed regarding exposures during the week before illness onset. A ground beef traceback investigation was performed. Ground beef samples from patient homes and a grocery store were tested for STEC O157. Rodeo managers were interviewed regarding food vendors present and cattle used at the rodeos. Environmental samples were collected from rodeo grounds. Two-enzyme pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) were performed on isolates. RESULTS: Fourteen patients with primary STEC O157 illness were reported in this outbreak. Isolates from all patients were indistinguishable by PFGE. Isolates from nine patients had identical MLVA patterns (main outbreak strain), and five had minor differences. Thirteen (93%) patients reported ground beef consumption during the week before illness onset. Results of the ground beef traceback investigation and ground beef sampling were negative. Of 12 primary patients asked specifically about rodeo attendance, all reported having attended a rodeo during the week before illness onset; four rodeos were mentioned. All four rodeos had used bulls from the same cattle supplier. An isolate of STEC O157 identified from a dirt sample collected from the bullpens of one of the attended rodeos was indistinguishable by PFGE and MLVA from the main outbreak strain. DISCUSSION: Recommendations were provided to rodeo management to keep livestock and manure separate from rodeo attendees. This is the first reported STEC O157 outbreak associated with attendance at multiple rodeos. Public health officials should be aware of the potential for rodeo-associated STEC illness.


Subject(s)
Cattle Diseases/microbiology , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli O157/isolation & purification , Manure/microbiology , Soil Microbiology , Adolescent , Adult , Animals , Cattle , Cattle Diseases/transmission , Child , Child, Preschool , Electrophoresis, Gel, Pulsed-Field , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Female , Food Microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Humans , Idaho/epidemiology , Infant , Male , Meat/microbiology , Middle Aged , Public Health , Utah/epidemiology , Young Adult
16.
Infect Control Hosp Epidemiol ; 31(12): 1207-15, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21028984

ABSTRACT

BACKGROUND: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes skin and soft-tissue infection (SSTI) in military recruits. OBJECTIVE: To evaluate the effectiveness of 2% chlorhexidine gluconate (CHG)-impregnated cloths in reducing rates of SSTI and S. aureus colonization among military recruits. DESIGN: A cluster-randomized (by platoon), double-blind, controlled effectiveness trial. SETTING: Marine Officer Candidate School, Quantico, Virginia, 2007. PARTICIPANTS: Military recruits. INTERVENTION: Application of CHG-impregnated or control (Comfort Bath; Sage) cloths applied over entire body thrice weekly. MEASUREMENTS: Recruits were monitored daily for SSTI. Baseline and serial nasal and/or axillary swabs were collected to assess S. aureus colonization. RESULTS: Of 1,562 subjects enrolled, 781 (from 23 platoons) underwent CHG-impregnated cloth application and 781 (from 21 platoons) underwent control cloth application. The rate of compliance (defined as application of 50% or more of wipes) at 2 weeks was similar (CHG group, 63%; control group, 67%) and decreased over the 6-week period. The mean 6-week SSTI rate in the CHG-impregnated cloth group was 0.094, compared with 0.071 in the control group (analysis of variance model rate difference, 0.025 ± 0.016; P = .14). At baseline, 43% of subjects were colonized with methicillin-susceptible S. aureus (MSSA), and 2.1% were colonized with MRSA. The mean incidence of colonization with MSSA was 50% and 61% (P = .026) and with MRSA was 2.6% and 6.0% (P = .034) for the CHG-impregnated and control cloth groups, respectively. CONCLUSIONS: CHG-impregnated cloths applied thrice weekly did not reduce rates of SSTI among recruits. S. aureus colonization rates increased in both groups but to a lesser extent in those assigned to the CHG-impregnated cloth intervention. Antecedent S. aureus colonization was not a risk factor for SSTI. Additional studies are needed to identify effective measures for preventing SSTI among military recruits. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT00475930.


Subject(s)
Chlorhexidine/administration & dosage , Disinfectants/administration & dosage , Military Personnel , Soft Tissue Infections/prevention & control , Staphylococcal Skin Infections/prevention & control , Adolescent , Adult , Analysis of Variance , Chlorhexidine/adverse effects , Disinfectants/adverse effects , Double-Blind Method , Female , Humans , Infection Control/methods , Male , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Patient Compliance , Soft Tissue Infections/epidemiology , Staphylococcal Skin Infections/epidemiology , Textiles , Virginia/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...