Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 154(7): 1427-38, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18493243

ABSTRACT

BACKGROUND AND PURPOSE: The regulatory guidelines (ICHS7B) recommending inhibition of the delayed rectifier K(+) current (I(Kr)), carried by human ether-a-go-go-related gene (hERG) channels in cardiac cells (the hERG test), as a 'first line' test for identifying compounds inducing QT prolongation, have limitations, some of which are outlined here. EXPERIMENTAL APPROACH: hERG current was measured in HEK293 cells, stably transfected with hERG channels; action potential duration (APD) and arrhythmogenic effects were measured in isolated Purkinje fibres and perfused hearts from rabbits. KEY RESULTS: 576 compounds were screened in the hERG test: 58% were identified as hERG inhibitors, 39% had no effect and 3% were classified as stimulators. Of the hERG inhibitors, 92 were tested in the APD assay: 55.4% of these prolonged APD, 28.3% had no effect and 16.3% shortened APD. Of the 70 compounds without effect on hERG channels, 54.3% did not affect APD, 25.7% prolonged, while 20% significantly shortened APD. Dofetilide (hERG inhibitor; IC(50), 29 nM) prolonged QT and elicited early after-depolarizations and/or torsade de pointes (TdP) in isolated hearts. Mallotoxin and NS1643 (hERG current stimulators at 3 microM), levcromakalim and nicorandil (no effect on hERG current), all significantly shortened APD and QT, and elicited ventricular fibrillation (VF) in isolated hearts. CONCLUSION AND IMPLICATIONS: The hERG assay alone did not adequately identify drugs inducing QT prolongation. It is also important to detect drug-induced QT shortening, as this effect is associated with a potential risk for ventricular tachycardia and VF, the latter being invariably fatal, whereas TdP has an approximately 15-25% incidence of death.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Ether-A-Go-Go Potassium Channels/drug effects , Long QT Syndrome/chemically induced , Models, Biological , Action Potentials/drug effects , Animals , Cell Line , Ether-A-Go-Go Potassium Channels/metabolism , Female , Guidelines as Topic , Humans , Purkinje Fibers/drug effects , Rabbits , Tachycardia, Ventricular/chemically induced , Torsades de Pointes/chemically induced , Ventricular Fibrillation/chemically induced
2.
Biochim Biophys Acta ; 1330(1): 83-93, 1997 Nov 13.
Article in English | MEDLINE | ID: mdl-9375815

ABSTRACT

Li+ is the only ion that can replace the physiological intra- and extracellular activator cations of the Na+/K+ pump. In order to study this singular property of Li+ in some detail, the activation of the Na+/K+ pump current (Ip) by intra- and extracellular Li+ (Li+; Li[o]+) was measured in isolated guinea-pig ventricular myocytes by means of whole cell recording at 34 degrees C and a holding potential of -20 mV. Ip was identified as current blocked by dihydro-ouabain. Half-maximal Ip activation occurred at 23 mM Li(o)+ (K0.5 value) in cells containing Na+ (50 or 100 mM) and at 73 mM Li(o)+ in myocytes containing Li+ (100 mM). The K0.5 value of Ip activation by Li(o)+ increased with depolarisation, suggesting the transfer of 0.2 of an elementary charge across the electric field of the sacrolemma during Li(o)+-binding. An intracellular Li+ concentration of 36 mM caused half-maximal Ip activation in cells superfused with Na+- and Li+-free media containing 1 mM K+. In Na+-free solutions. the Ip-V curve displayed a positive slope at negative membrane potentials. A negative slope at positive potentials was observed in Li+-containing media. It is concluded that Li+ is less efficacious and potent than the physiological pump activator cations. The shape of the Ip-V curves in Na+-free solutions supports the view that the cardiac Na+/K+ pump contains a channel-like structure and suggests that there are voltage-sensitive steps in the pump cycle, apart from the binding of external cations.


Subject(s)
Heart Ventricles/metabolism , Lithium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Enzyme Activation , Guinea Pigs , Heart Ventricles/cytology , Patch-Clamp Techniques
3.
J Physiol ; 484 ( Pt 3): 617-28, 1995 May 01.
Article in English | MEDLINE | ID: mdl-7623280

ABSTRACT

1. The antagonistic effect of extracellular potassium ions (K+o) and dihydro-ouabain (DHO) on the Na(+)-K+ pump current (Ip) was studied in isolated ventricular cells. 2. The myocytes were isolated from rats and guinea-pigs, two species with different sensitivity towards cardiac glycosides. Ip measurements were performed at 32-34 degrees C by means of whole-cell recording. The membrane potential was held at -20 mV throughout. 3. The DHO concentration ([DHO]) required for half-maximal Ip inhibition (apparent KD value, KD') amounted to 2.4 x 10(-3) and 1.4 x 10(-5) M for rat and guinea-pig myocytes, respectively, at 5.4 mM K+o. 4. The data suggest one-to-one binding of DHO to the Na(+)-K+ pump and a smaller association rate constant, as well as a larger dissociation rate constant, for binding of DHO in the rat cells. 5. Ip activation by K+o was nearly identical in myocytes of both species and was measured to be half-maximal at approximately 1 mM K+o. Half-maximal Ip activation by K+o remained essentially unchanged, but Ip decreased in media containing [DHO] near the respective KD' at 5.4 mM K+o. 6. The concentration-response curve of Ip inhibition by DHO was shifted to higher [DHO] at higher [K+]o. KD' increased correspondingly. The slope of the curve was unaffected. 7. Ip and KD' displayed a similar dependence on [K+]o. 8. KD' was larger in Na(+)-free than in Na(+)-containing media under conditions in which the activation of Ip by K+o was nearly the same. 9. It is concluded that the antagonism between K+o and DHO, with regard to the activation of Ip, is non-competitive. A possible mechanism of the antagonism is discussed. The mechanism implies binding of K+o and DHO to different conformational states of the Na(+)-K+ pump which are temporarily exposed to the external face of the sarcolemma in the pump cycle. The DHO-bound states do not participate in the generation of Ip.


Subject(s)
Myocardium/metabolism , Ouabain/analogs & derivatives , Potassium/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/physiology , Animals , Electric Conductivity , Guinea Pigs , Myocardium/cytology , Ouabain/pharmacology , Rats , Sodium/pharmacology , Sodium-Potassium-Exchanging ATPase/drug effects , Species Specificity
4.
J Physiol ; 481 ( Pt 2): 279-91, 1994 Dec 01.
Article in English | MEDLINE | ID: mdl-7738826

ABSTRACT

1. Whole-cell recording from isolated rat and guinea-pig ventricular myocytes revealed a change of the cardiac Na+ pump current (Ip)-voltage (V) relationship by cardiac glycosides, specific inhibitors of the Na(+)-K+ pump. 2. Dihydro-ouabain (DHO) diminished Ip in rat ventricular cells at 0 mV in a concentration-dependent manner. 3. The concentration-response curve of Ip inhibition caused by DHO was shifted to higher [DHO] at higher extracellular K+ concentrations ([K+]o) or at more negative membrane potentials. 4. In rat myocytes, DHO immediately flattened the normalized cardiac Ip-V curve and evoked or enhanced a region of negative slope. 5. Ouabain, at concentrations which caused a comparable inhibition of Ip, exerted DHO-like effects on the Ip-V relationship of rat ventricular myocytes. However, the effects developed more slowly. 6. A slowly developing alteration of the Ip-V curve was also observed upon application of DHO to guinea-pig ventricular cells. The range of [DHO] used was about 100-fold lower than that applied to rat ventricular cells, but was equally effective for Ip inhibition. 7. Increasing the K+ concentration of DHO-containing media affected the existing equilibrium of DHO binding to the cardiac Na(+)-K+ pump. A new equilibrium was reached within about 3 s in rat ventricular myocytes, but only within about 50 s in guinea-pig ventricular cells under the experimental conditions chosen. 8. It is concluded that the changes of the cardiac Ip-V curve induced by cardiac glycosides are mediated by voltage-dependent variations of the local [K+]o at the K+ binding sites of the Na(+)-K+ pump in an 'access channel'. The variations were estimated by means of the Boltzmann equation. The estimations agreed with those derived from the measured DHO binding to the Na(+)-K+ pump at various [K+]o. A new equilibrium of glycoside binding to the pump is established at the altered [K+]o. The time necessary to reach the new binding equilibrium varies with the cardioactive steroid, its concentration and the glycoside sensitivity of the cardiac cells.


Subject(s)
Cardiac Glycosides/pharmacology , Heart/drug effects , Myocardium/metabolism , Sodium-Potassium-Exchanging ATPase/drug effects , Animals , Electrophysiology , Guinea Pigs , Heart/innervation , Heart Ventricles/cytology , Heart Ventricles/innervation , In Vitro Techniques , Membrane Potentials/drug effects , Myocardium/cytology , Neurons/drug effects , Neurons/metabolism , Ouabain/analogs & derivatives , Ouabain/pharmacology , Patch-Clamp Techniques , Potassium/physiology , Rats , Ventricular Function
SELECTION OF CITATIONS
SEARCH DETAIL