Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Sci Rep ; 14(1): 12416, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816440

ABSTRACT

Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Streptococcus pneumoniae , Transcriptome , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , Ligands , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Peptides/metabolism , Peptides/pharmacology
2.
PLoS One ; 17(7): e0270736, 2022.
Article in English | MEDLINE | ID: mdl-35862344

ABSTRACT

BACKGROUND: Almost 200 million children worldwide are either undernourished or overweight. Only a few studies have addressed the effect of variation in nutritional status on vaccine response. We previously demonstrated an association between stunting and an increased post-vaccination 13-valent pneumococcal conjugate vaccine (PCV13) response. In this prospective study, we assessed to what extent metabolic hormones may be a modifier in the association between nutritional status and PCV13 response. METHODS: Venezuelan children aged 6 weeks to 59 months were vaccinated with a primary series of PCV13. Nutritional status and serum levels of leptin, adiponectin and ghrelin were measured upon vaccination and their combined effect on serum post-vaccination antibody concentrations was assessed by generalized estimating equations multivariable regression analysis. RESULTS: A total of 210 children were included, of whom 80 were stunted, 81 had a normal weight and 49 were overweight. Overweight children had lower post-vaccination antibody concentrations than normal weight children (regression coefficient -1.15, 95% CI -2.22 --0.072). Additionally, there was a significant adiponectin-nutritional status interaction. In stunted children, higher adiponectin serum concentrations were associated with lower post-PCV13 antibody concentrations (regression coefficient -0.19, 95% CI -0.24 --0.14) while the opposite was seen in overweight children (regression coefficient 0.14, 95% CI 0.049-0.22). CONCLUSION: Metabolic hormones, in particular adiponectin, may modify the effect of nutritional status on pneumococcal vaccine response. These findings emphasize the importance of further research to better understand the immunometabolic pathways underlying vaccine response and enable a future of optimal personalized vaccination schedules.


Subject(s)
Pneumococcal Infections , Adiponectin , Child , Humans , Infant , Nutritional Status , Overweight , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Prospective Studies , Vaccination , Vaccines, Conjugate
3.
Clin Infect Dis ; 72(2): 212-221, 2021 01 27.
Article in English | MEDLINE | ID: mdl-31919525

ABSTRACT

BACKGROUND: Recent research suggests that the microbiota affects susceptibility to both respiratory tract infections (RTIs) and gastrointestinal infections (GIIs). In order to optimize global treatment options, it is important to characterize microbiota profiles across different niches and geographic/socioeconomic areas where RTI and GII prevalences are high. METHODS: We performed 16S sequencing of nasopharyngeal swabs from 209 Venezuelan Amerindian children aged 6 weeks-59 months who were participating in a 13-valent pneumococcal conjugate vaccine (PCV13) study. Using random forest models, differential abundance testing, and regression analysis, we determined whether specific bacteria were associated with RTIs or GIIs and variation in PCV13 response. RESULTS: Microbiota compositions differed between children with or without RTIs (P = .018) or GIIs (P = .001). Several species were associated with the absence of infections. Some of these health-associated bacteria are also observed in developed regions, such as Corynebacterium (log2(fold change [FC]) = 3.30 for RTIs and log2(FC) = 1.71 for GIIs), while others are not commonly observed in developed regions, such as Acinetobacter (log2(FC) = 2.82 and log2(FC) = 5.06, respectively). Klebsiella spp. presence was associated with both RTIs (log2(FC) = 5.48) and GIIs (log2(FC) = 7.20). CONCLUSIONS: The nasopharyngeal microbiota of rural Venezuelan children included several bacteria that thrive in tropical humid climates. Interestingly, nasopharyngeal microbiota composition not only differed in children with an RTI but also in those with a GII, which suggests a reciprocal interplay between the 2 environments. Knowledge of region-specific microbiota patterns enables tailoring of preventive and therapeutic approaches.


Subject(s)
Communicable Diseases , Microbiota , Pneumococcal Infections , Respiratory Tract Infections , Bacteria/genetics , Child , Humans , Infant , Infant, Newborn , Nasopharynx , Pneumococcal Vaccines , Respiratory Tract Infections/epidemiology
4.
Front Microbiol ; 9: 3013, 2018.
Article in English | MEDLINE | ID: mdl-30568648

ABSTRACT

The Ami-AliA/AliB oligopeptide permease of Streptococcus pneumoniae has been suggested to play a role in environmental sensing and colonisation of the nasopharynx by this human bacterial pathogen by binding peptides derived from bacterial neighbours of other species in the microbiota. Here, we investigated the effects of the peptide ligands of the permease's substrate binding proteins AmiA, AliA, and AliB on pneumococcal phenotype. AmiA and AliA ligands reduced pneumococcal growth, increased biofilm production and reduced capsule size. In contrast, AliB ligand increased growth and greatly increased bacterial chain length. A decrease in transformation rate was observed in response to all three peptides. Changes in protein expression were also observed, particularly those associated with metabolism and cell wall synthesis. Understanding interspecies bacterial communication and its effect on development of colonising versus invasive phenotypes has the potential to reveal new targets to tackle and prevent pneumococcal infections.

5.
PLoS One ; 12(1): e0170227, 2017.
Article in English | MEDLINE | ID: mdl-28107501

ABSTRACT

OBJECTIVES: Acceptance of childhood vaccination varies between societies, affecting worldwide vaccination coverage. Low coverage rates are common in indigenous populations where parents often choose not to vaccinate their children. We aimed to gain insight into reasons for vaccine acceptance or rejection among Warao Amerindians in Venezuela. METHODS: Based on records of vaccine acceptance or refusal, in-depth interviews with 20 vaccine-accepting and 11 vaccine-declining caregivers were performed. Parents' attitudes were explored using a qualitative approach. RESULTS: Although Warao caregivers were generally in favor of vaccination, fear of side effects and the idea that young and sick children are too vulnerable to be vaccinated negatively affected vaccine acceptance. The importance assigned to side effects was related to the perception that these resembled symptoms/diseases of another origin and could thus harm the child. Religious beliefs or traditional healers did not influence the decision-making process. CONCLUSIONS: Parental vaccine acceptance requires educational programs on the preventive nature of vaccines in relation to local beliefs about health and disease. Attention needs to be directed at population-specific concerns, including explanation on the nature of and therapeutic options for side effects.


Subject(s)
Indians, South American/psychology , Parents/psychology , Patient Acceptance of Health Care , Vaccination/statistics & numerical data , Adult , Child , Child, Preschool , Decision Making , Female , Humans , Male , Qualitative Research , Venezuela
6.
Trop Med Int Health ; 22(4): 407-414, 2017 04.
Article in English | MEDLINE | ID: mdl-28072501

ABSTRACT

OBJECTIVE: To assess risk factors for nasopharyngeal carriage of potential pathogens in geographically isolated Warao Amerindians in Venezuela. METHODS: In this point prevalence survey, nasopharyngeal swabs were obtained from 1064 Warao Amerindians: 504 children aged 0-4 years, 227 children aged 5-10 years and 333 caregivers. Written questionnaires were completed to obtain information on demographics and environmental risk factors. Anthropometric measurements were performed in children aged 0-4 years. RESULTS: Carriage rates of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae and Moraxella catarrhalis were 51%, 7%, 1% and 13%, respectively. Crowding index, method of cooking and tobacco exposure were not associated with increased carriage. In multivariable analysis, an increase in height-for-age Z score (i.e. improved chronic nutritional status) was associated with decreased odds of S. pneumoniae colonisation (OR 0.76, 95% CI 0.70-0.83) in children aged 0-4 years. CONCLUSIONS: Better knowledge of demographic and environmental risk factors facilitates better understanding of the dynamics of colonisation with respiratory bacteria in an Amerindian population. Poor chronic nutritional status was associated with increased pathogen carriage in children <5 years of age. The high rates of stunting generally observed in indigenous children may fuel the acquisition of respiratory bacteria that can lead to respiratory and invasive disease.


Subject(s)
Carrier State , Gram-Negative Bacteria/growth & development , Growth Disorders/complications , Indians, South American , Nasopharynx/microbiology , Respiratory Tract Infections/etiology , Staphylococcus/growth & development , Adolescent , Adult , Body Height , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nutritional Status , Prevalence , Respiratory Tract Infections/microbiology , Risk Factors , Surveys and Questionnaires , Venezuela , Young Adult
7.
Vaccine ; 34(48): 5968-5974, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27771185

ABSTRACT

Widespread vaccination against Streptococcus pneumoniae (the pneumococcus) has significantly reduced pneumococcal disease caused by vaccine serotypes. Despite vaccination, overall pneumococcal colonization rates in children have not reduced and otitis media (OM) by non-vaccine serotypes remains one of the most common childhood infections. Pneumococcal surface protein A (PspA) has been shown to be a promising protein antigen to induce broad protection against pneumococcal colonization. However, its ability to protect against OM remains unclear. Using our previously established mouse model of influenza-virus induced pneumococcal OM, we here show that intranasal vaccination of mice with PspA together with the mucosal adjuvant CTB results in a decrease in pneumococcal load in the middle ears. This decrease correlated with the induction of PspA-specific IgA, a balanced IgG1:IgG2a antibody response and the induction of a mucosal Th17 response. Our data suggests that the IL-17 response to PspA is more important for protection against OM, whilst the presence of antibodies may be less important, as determined in mice deficient in IL-17 signaling or antibody production. Together, these results suggest that mucosal vaccination with PspA may not only protect against colonization, but also against the development of virus-induced pneumococcal OM.


Subject(s)
Antibodies, Bacterial/immunology , Interleukin-17/immunology , Otitis Media/immunology , Otitis Media/prevention & control , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Bacterial Load , Bacterial Proteins/immunology , Disease Models, Animal , Ear, Middle/microbiology , Immunity, Mucosal , Immunoglobulin A/immunology , Interleukin-17/deficiency , Mice, Inbred BALB C , Otitis Media/virology , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Th17 Cells/immunology , Vaccination/methods
8.
Bioelectromagnetics ; 37(7): 433-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27553635

ABSTRACT

There is still uncertainty whether extremely low frequency electromagnetic fields (ELF-EMF) can induce health effects like immunomodulation. Despite evidence obtained in vitro, an unambiguous association has not yet been established in vivo. Here, mice were exposed to ELF-EMF for 1, 4, and 24 h/day in a short-term (1 week) and long-term (15 weeks) set-up to investigate whole body effects on the level of stress regulation and immune response. ELF-EMF signal contained multiple frequencies (20-5000 Hz) and a magnetic flux density of 10 µT. After exposure, blood was analyzed for leukocyte numbers (short-term and long-term) and adrenocorticotropic hormone concentration (short-term only). Furthermore, in the short-term experiment, stress-related parameters, corticotropin-releasing hormone, proopiomelanocortin (POMC) and CYP11A1 gene-expression, respectively, were determined in the hypothalamic paraventricular nucleus, pituitary, and adrenal glands. In the short-term but not long-term experiment, leukocyte counts were significantly higher in the 24 h-exposed group compared with controls, mainly represented by increased neutrophils and CD4 ± lymphocytes. POMC expression and plasma adrenocorticotropic hormone were significantly lower compared with unexposed control mice. In conclusion, short-term ELF-EMF exposure may affect hypothalamic-pituitary-adrenal axis activation in mice. Changes in stress hormone release may explain changes in circulating leukocyte numbers and composition. Bioelectromagnetics. 37:433-443, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.


Subject(s)
Electromagnetic Fields/adverse effects , Hypothalamo-Hypophyseal System/cytology , Hypothalamo-Hypophyseal System/radiation effects , Leukocyte Count , Pituitary-Adrenal System/cytology , Pituitary-Adrenal System/radiation effects , Signal Transduction/radiation effects , Animals , Mice , Time Factors
10.
Vaccine ; 34(20): 2312-20, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27036512

ABSTRACT

OBJECTIVE: To determine the impact of pre-vaccination nutritional status on vaccine responses in Venezuelan Warao Amerindian children vaccinated with the 13-valent pneumococcal conjugate vaccine (PCV13) and to investigate whether saliva can be used as read-out for these vaccine responses. METHODS: A cross-sectional cohort of 504 Venezuelan Warao children aged 6 weeks - 59 months residing in nine geographically isolated Warao communities were vaccinated with a primary series of PCV13 according to Centers for Disease Control and Prevention (CDC)-recommended age-related schedules. Post-vaccination antibody concentrations in serum and saliva of 411 children were measured by multiplex immunoassay. The influence of malnutrition present upon vaccination on post-vaccination antibody levels was assessed by univariate and multivariable generalized estimating equations linear regression analysis. RESULTS: In both stunted (38%) and non-stunted (62%) children, salivary antibody concentrations correlated well with serum levels for all serotypes with coefficients varying from 0.61 for serotype 3-0.80 for serotypes 5, 6A and 23F (all p < 0.01). Surprisingly, higher serum and salivary antibody levels were observed with increasing levels of stunting in children for all serotypes. This was statistically significant for 5/13 and 11/13 serotype-specific serum and saliva IgG concentrations respectively. CONCLUSION: Stunted Amerindian children showed generally higher antibody concentrations than well-nourished children following PCV13 vaccination, indicating that chronic malnutrition influences vaccine response. Saliva samples might be useful to monitor serotype-specific antibody levels induced by PCV vaccination. This would greatly facilitate studies of vaccine efficacy in rural settings, since participant resistance generally hampers blood drawing.


Subject(s)
Antibodies, Bacterial/blood , Growth Disorders/immunology , Nutritional Status , Pneumococcal Vaccines/administration & dosage , Saliva/chemistry , Antibodies, Bacterial/chemistry , Child, Preschool , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Infant , Linear Models , Male , Malnutrition/immunology , Pneumococcal Infections/prevention & control , Serogroup , Streptococcus pneumoniae/classification , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/therapeutic use , Venezuela
11.
Mol Microbiol ; 100(6): 972-88, 2016 06.
Article in English | MEDLINE | ID: mdl-26919406

ABSTRACT

The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce.


Subject(s)
Choline/metabolism , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Choline/genetics , Female , Mice , Operon , Pneumococcal Infections/microbiology , Promoter Regions, Genetic , Streptococcus pneumoniae/genetics , Teichoic Acids/metabolism
12.
Genome Biol Evol ; 8(4): 955-74, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26912404

ABSTRACT

The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored.


Subject(s)
Genome, Bacterial , Moraxella catarrhalis/genetics , Cell Line , Evolution, Molecular , Genomics , Humans , Moraxella catarrhalis/growth & development , Moraxellaceae Infections/microbiology , Multigene Family , Phylogeny , Virulence Factors/genetics
13.
J Med Microbiol ; 65(2): 129-136, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26628261

ABSTRACT

Streptococcus pneumoniae is responsible for an estimated 1.6 million deaths worldwide every year. While rapid detection and timely treatment with appropriate antibiotics is preferred, this is often difficult due to the amount of time that detection with blood cultures takes. In this study, a novel quantitative PCR assay for the detection of Streptococcus pneumoniae was developed. To identify novel targets, we analysed the pneumococcal genome for unique, repetitive DNA sequences. This approach identified comX, which is conserved and present in duplicate copies in Streptococcus pneumoniae but not in other bacterial species. Comparison with lytA, the current 'gold standard' for detection by quantitative PCR, demonstrated an analytic specificity of 100% for both assays on a panel of 10 pneumococcal and 18 non-pneumococcal isolates, but a reduction of 3.5 quantitation cycle values (± 0.23 sem), resulting in an increased analytical detection rate of comX. We validated our assay on DNA extracted from the serum of 30 bacteraemic patients who were blood culture positive for Streptococcus pneumoniae and 51 serum samples that were culture positive for other bacteria. This resulted in a similar clinical sensitivity between the comX and lytA assays (47%) and in a diagnostic specificity of 98.2 and 100% for the lytA and comX assays, respectively. In conclusion, we have developed a novel quantitative PCR assay with increased analytical sensitivity for the detection of Streptococcus pneumoniae, which may be used to develop a rapid bedside test for the direct detection of Streptococcus pneumoniae in clinical specimens.


Subject(s)
Bacteremia/microbiology , Bacterial Proteins/genetics , Pneumococcal Infections/microbiology , Real-Time Polymerase Chain Reaction/methods , Streptococcus pneumoniae/isolation & purification , Transcription Factors/genetics , Bacteremia/diagnosis , Female , Humans , Male , Pneumococcal Infections/diagnosis , Sensitivity and Specificity , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics
14.
Sci Rep ; 5: 14952, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26492862

ABSTRACT

The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped 349 strains of S. pneumoniae isolated from IPD patients in Nijmegen between 2001 and 2011. Introduction of PCV7 in the Dutch National Immunization Program in 2006 preluded substantial alterations in the IPD population structure caused by serotype replacement. No evidence could be found for vaccine induced capsular switches. We observed that after a temporary bottleneck in gene diversity after the introduction of PCV7, the accessory gene pool re-expanded mainly by genes already circulating pre-PCV7. In the post-vaccine genomic population a number of genes changed frequency, certain genes became overrepresented in vaccine serotypes, while others shifted towards non-vaccine serotypes. Whether these dynamics in the invasive pneumococcal population have truly contributed to invasiveness and manifestations of disease remains to be further elucidated. We suggest the use of whole genome sequencing for surveillance of pneumococcal population dynamics that could give a prospect on the course of disease, facilitating effective prevention and management of IPD.


Subject(s)
Biological Evolution , Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Streptococcus pneumoniae/genetics , Genome, Bacterial , Streptococcus pneumoniae/immunology
15.
PLoS One ; 10(4): e0123702, 2015.
Article in English | MEDLINE | ID: mdl-25901369

ABSTRACT

CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/metabolism , Amidohydrolases/metabolism , Bacterial Proteins/genetics , Cefotaxime/pharmacology , Cell Wall/drug effects , Hydrolysis , Mutation , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Transformation, Genetic
16.
J Virol ; 89(9): 5022-31, 2015 May.
Article in English | MEDLINE | ID: mdl-25694607

ABSTRACT

UNLABELLED: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE: RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for unbalanced responses associated with an exuberant influx of inflammatory cells and enhanced disease, detailed characterization of primed host responses has become a crucial element in RSV vaccine research. We investigated the lung proteome of mice challenged with RSV upon priming with vaccine preparations known to induce phenotypically distinct host responses. Seven host proteins whose expression levels are associated with vaccine-mediated enhanced disease have been identified. The identified protein biomarkers support the development as well as detailed evaluation of next-generation RSV vaccines.


Subject(s)
Biomarkers/analysis , Proteome/analysis , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/immunology , Animals , Disease Models, Animal , Eosinophils/immunology , Female , Lung/pathology , Mass Spectrometry , Mice, Inbred BALB C , Neutrophils/immunology , Th2 Cells/immunology
17.
BMC Genomics ; 15: 958, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25373505

ABSTRACT

BACKGROUND: Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. RESULT: Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept. CONCLUSION: Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/genetics , Genes, Essential , Bacteria/drug effects , Cell Line , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Gastrointestinal Tract/immunology , Humans , Metabolic Networks and Pathways/genetics , Microbial Sensitivity Tests , Microbiota , Molecular Sequence Annotation , Multigene Family , Open Reading Frames/genetics , Reproducibility of Results , Subcellular Fractions/metabolism
18.
PLoS One ; 9(8): e105011, 2014.
Article in English | MEDLINE | ID: mdl-25133400

ABSTRACT

Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.


Subject(s)
Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bordetella pertussis/immunology , Proteomics , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bordetella pertussis/physiology , Disease Models, Animal , Female , Lung/microbiology , Mice , Mice, Inbred BALB C , Pertussis Vaccine/immunology , Pertussis Vaccine/metabolism , Whooping Cough/immunology , Whooping Cough/prevention & control
19.
BMC Infect Dis ; 14: 383, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25012075

ABSTRACT

BACKGROUND: Interferon-gamma release assays have emerged as a more specific alternative to the tuberculin skin test (TST) for detection of tuberculosis (TB) infection, especially in Bacille Calmette-Guérin (BCG) vaccinated people. We determined the prevalence of Mycobacterium tuberculosis infection by TST and QuantiFERON®-TB Gold In-Tube (QFT-GIT) and assessed agreement between the two test methods and factors associated with positivity in either test in Warao Amerindian children in Venezuela. Furthermore, progression to active TB disease was evaluated for up to 12 months. METHODS: 163 HIV-negative childhood household contacts under 16 years of age were enrolled for TST, QFT-GIT and chest X-ray (CXR). Follow-up was performed at six and 12 months. Factors associated with TST and QFT-GIT positivity were studied using generalized estimation equations logistic regression models. RESULTS: At baseline, the proportion of TST positive children was similar to the proportion of children with a positive QFT-GIT (47% vs. 42%, p = 0.12). Overall concordance between QFT-GIT and TST was substantial (kappa 0.76, 95% CI 0.46-1.06). Previous BCG vaccination was not associated with significantly increased positivity in either test (OR 0.68, 95% CI 0.32-1.5 for TST and OR 0.51, 95% CI 0.14-1.9 for QFT-GIT). Eleven children were diagnosed with active TB at baseline. QFT-GIT had a higher sensitivity for active TB (88%, 95% CI 47-98%) than TST (55%, 95% CI 24-83%) while specificities were similar (respectively 58% and 55%). Five initially asymptomatic childhood contacts progressed to active TB disease during follow-up. CONCLUSION: Replacement of TST by the QFT-GIT for detection of M. tuberculosis infection is not recommended in this resource-constrained setting as test results showed substantial concordance and TST positivity was not affected by previous BCG vaccination. The QFT-GIT had a higher sensitivity than the TST for the detection of TB disease. However, the value of the QFT-GIT as an adjunct in diagnosing TB disease is limited by a high variability in QFT-GIT results over time.


Subject(s)
Interferon-gamma Release Tests/methods , Tuberculin Test/methods , Tuberculosis, Pulmonary/diagnosis , Adolescent , Child , Child Welfare , Child, Preschool , Contact Tracing , Female , Humans , Infant , Male , Mycobacterium tuberculosis , Population Groups/statistics & numerical data , Predictive Value of Tests , Reagent Kits, Diagnostic , Tuberculosis, Pulmonary/epidemiology , Venezuela
20.
BMC Infect Dis ; 14: 293, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24885094

ABSTRACT

BACKGROUND: While in developed countries the prevalence of allergic diseases is rising, inflammatory diseases are relatively uncommon in rural developing areas. High prevalence rates of helminth and protozoan infections are commonly found in children living in rural settings and several studies suggest an inverse association between helminth infections and allergies. No studies investigating the relationship between parasitic infections and atopic diseases in rural children of developing countries under the age of 2 years have been published so far. We performed a cross-sectional survey to investigate the association of helminth and protozoan infections and malnutrition with recurrent wheezing and atopic eczema in Warao Amerindian children in Venezuela. METHODS: From August to November 2012, 229 children aged 0 to 2 years residing in the Orinoco Delta in Venezuela were enrolled. Data were collected through standardized questionnaires and physical examination, including inspection of the skin and anthropometric measurements. A stool sample was requested from all participants and detection of different parasites was performed using microscopy and real time polymerase chain reaction (PCR). RESULTS: We observed high prevalence rates of atopic eczema and recurrent wheezing, respectively 19% and 23%. The prevalence of helminth infections was 26% and the prevalence of protozoan infections was 59%. Atopic eczema and recurrent wheezing were more frequently observed in stunted compared with non-stunted children in multivariable analysis (OR 4.3, 95% CI 1.3 - 13.6, p = 0.015 and OR 4.5, 95% CI 0.97 - 21.2, p = 0.055). Furthermore, recurrent wheezing was significantly more often observed in children with protozoan infections than in children without protozoan infections (OR 6.7, 95% CI 1.5 - 30.5). CONCLUSIONS: High prevalence rates of atopic eczema and recurrent wheezing in Warao Amerindian children under 2 years of age were related to stunting and intestinal protozoan infections respectively. Helminth infections were not significantly associated with either atopic eczema or recurrent wheezing.


Subject(s)
Dermatitis, Atopic/epidemiology , Helminthiasis/epidemiology , Protozoan Infections/epidemiology , Respiratory Sounds/etiology , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Intestinal Diseases/parasitology , Male , Malnutrition/epidemiology , Rural Health , Rural Population , Surveys and Questionnaires , Venezuela/epidemiology , Venezuela/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL
...