Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 12: 651272, 2021.
Article in English | MEDLINE | ID: mdl-34484091

ABSTRACT

While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(-) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(-) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.

2.
Exp Neurol ; 341: 113699, 2021 07.
Article in English | MEDLINE | ID: mdl-33736974

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7-11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845's effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Neurodegenerative Diseases/prevention & control , Neuroprotection/physiology , Neuroprotective Agents/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , tat Gene Products, Human Immunodeficiency Virus/toxicity , Amidohydrolases/deficiency , Amidohydrolases/genetics , Animals , Animals, Newborn , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/metabolism , Piperidines/pharmacology , Pyridines/pharmacology , Receptors, G-Protein-Coupled/metabolism
3.
J Neuroinflammation ; 17(1): 345, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33208151

ABSTRACT

BACKGROUND: Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS: Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry.  RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION: Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.


Subject(s)
Amino Acids/metabolism , Endocannabinoids/metabolism , Inflammation Mediators/metabolism , Lipid Metabolism/physiology , Morphine/administration & dosage , Neuroprotection/physiology , tat Gene Products, Human Immunodeficiency Virus/biosynthesis , Analgesics, Opioid/administration & dosage , Animals , Dose-Response Relationship, Drug , Inflammation Mediators/antagonists & inhibitors , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotection/drug effects , Pain Measurement/drug effects , Pain Measurement/methods , tat Gene Products, Human Immunodeficiency Virus/genetics
4.
J Neuroimmune Pharmacol ; 14(4): 661-678, 2019 12.
Article in English | MEDLINE | ID: mdl-31372820

ABSTRACT

In the era of combined antiretroviral therapy, HIV-1 infected individuals are living longer lives; however, longevity is met with an increasing number of HIV-1 associated neurocognitive disorders (HAND) diagnoses. The transactivator of transcription (Tat) is known to mediate the neurotoxic effects in HAND by acting directly on neurons and also indirectly via its actions on glia. The Go/No-Go (GNG) task was used to examine HAND in the Tat transgenic mouse model. The GNG task involves subjects discriminating between two stimuli sets in order to determine whether or not to inhibit a previously trained response. Data reveal inhibitory control deficits in female Tat(+) mice (p = .048) and an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group (p < .05). A significant negative correlation was noted between inhibitory control and IL CB1R expression (r = -.543, p = .045), with CB1R expression predicting 30% of the variance of inhibitory control (R2 = .295, p = .045). Furthermore, there was a significant increase in spontaneous excitatory postsynaptic current (sEPSC) frequencies in Tat(+) compared to Tat(-) mice (p = .008, across sexes). The increase in sEPSC frequency was significantly attenuated by bath application of PF3845, a fatty acid amide hydrolase (FAAH) enzyme inhibitor (p < .001). Overall, the GNG task is a viable measure to assess inhibitory control deficits in Tat transgenic mice and results suggest a potential therapeutic treatment for the observed deficits with drugs which modulate endocannabinoid enzyme activity. Graphical Abstract Results of the Go/No-Go operant conditioning task reveal inhibitory control deficits in female transgenic Tat(+) mice without significantly affecting males. The demonstrated inhibitory control deficits appear to be associated with an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group.


Subject(s)
AIDS Dementia Complex/metabolism , Disease Models, Animal , HIV-1 , Inhibition, Psychological , Receptor, Cannabinoid, CB1/biosynthesis , tat Gene Products, Human Immunodeficiency Virus/biosynthesis , AIDS Dementia Complex/genetics , AIDS Dementia Complex/psychology , Animals , Female , Limbic Lobe/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurocognitive Disorders/genetics , Neurocognitive Disorders/metabolism , Psychomotor Performance/physiology , Receptor, Cannabinoid, CB1/genetics , Up-Regulation/physiology , tat Gene Products, Human Immunodeficiency Virus/genetics
5.
Neuropharmacology ; 141: 55-65, 2018 10.
Article in English | MEDLINE | ID: mdl-30114402

ABSTRACT

The HIV-1 transactivator of transcription (Tat) is a neurotoxin involved in the pathogenesis of HIV-1 associated neurocognitive disorders (HAND). The neurotoxic effects of Tat are mediated directly via AMPA/NMDA receptor activity and indirectly through neuroinflammatory signaling in glia. Emerging strategies in the development of neuroprotective agents involve the modulation of the endocannabinoid system. A major endocannabinoid, anandamide (N-arachidonoylethanolamine, AEA), is metabolized by fatty acid amide hydrolase (FAAH). Here we demonstrate using a murine prefrontal cortex primary culture model that the inhibition of FAAH, using PF3845, attenuates Tat-mediated increases in intracellular calcium, neuronal death, and dendritic degeneration via cannabinoid receptors (CB1R and CB2R). Live cell imaging was used to assess Tat-mediated increases in [Ca2+]i, which was significantly reduced by PF3845. A time-lapse assay revealed that Tat potentiates cell death while PF3845 blocks this effect. Additionally PF3845 blocked the Tat-mediated increase in activated caspase-3 (apoptotic marker) positive neurons. Dendritic degeneration was characterized by analyzing stained dendritic processes using Imaris and Tat was found to significantly decrease the size of processes while PF3845 inhibited this effect. Incubation with CB1R and CB2R antagonists (SR141716A and AM630) revealed that PF3845-mediated calcium effects were dependent on CB1R, while reduced neuronal death and degeneration was CB2R-mediated. PF3845 application led to increased levels of AEA, suggesting the observed effects are likely a result of increased endocannabinoid signaling at CB1R/CB2R. Our findings suggest that modulation of the endogenous cannabinoid system through inhibition of FAAH may be beneficial in treatment of HAND.


Subject(s)
Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/pathology , Amidohydrolases/antagonists & inhibitors , HIV-1/pathogenicity , Nerve Degeneration/prevention & control , Neuroprotective Agents/pharmacology , tat Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , tat Gene Products, Human Immunodeficiency Virus/toxicity , Acquired Immunodeficiency Syndrome/enzymology , Animals , Arachidonic Acids , Calcium/metabolism , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Caspase 3/metabolism , Cell Death/drug effects , Endocannabinoids/pharmacology , Indoles/pharmacology , Mice , Nerve Degeneration/pathology , Piperidines/antagonists & inhibitors , Piperidines/pharmacology , Polyunsaturated Alkamides , Prefrontal Cortex/enzymology , Prefrontal Cortex/metabolism , Primary Cell Culture , Pyridines/antagonists & inhibitors , Pyridines/pharmacology , Rimonabant/pharmacology
6.
Mol Cell Neurosci ; 83: 92-102, 2017 09.
Article in English | MEDLINE | ID: mdl-28733129

ABSTRACT

In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids (eCBs) elicit neuroprotective and anti-inflammatory actions in several central nervous system (CNS) disease models, but their effects in HAND remain unknown. HIV-1 does not infect neurons, but produces viral toxins, such as transactivator of transcription (Tat), that disrupt neuronal calcium equilibrium and give rise to synaptodendritic injuries and cell death, the former being highly correlated with HAND. Consequently, we tested whether the eCBs N-arachidonoylethanolamine (anandamide/AEA) and 2-arachidonoyl-glycerol (2-AG) offer neuroprotective actions in a neuronal culture model. Specifically, we examined the neuroprotective actions of these eCBs on Tat excitotoxicity in primary cultures of prefrontal cortex neurons (PFC), and whether cannabinoid receptors mediate this neuroprotection. Tat-induced excitotoxicity was reflected by increased intracellular calcium levels, synaptodendritic damage, neuronal excitability, and neuronal death. Further, upregulation of cannabinoid 1 receptor (CB1R) protein levels was noted in the presence of HIV-1 Tat. The direct application of AEA and 2-AG reduced excitotoxic levels of intracellular calcium and promoted neuronal survival following Tat exposure, which was prevented by the CB1R antagonist rimonabant, but not by the CB2R antagonist AM630. Overall, our findings indicate that eCBs protect PFC neurons from Tat excitotoxicity in vitro via a CB1R-related mechanism. Thus, the eCB system possesses promising targets for treatment of neurodegenerative disorders associated with HIV-1 infection.


Subject(s)
Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Glycerides/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Calcium/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Cell Survival , Cells, Cultured , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Piperidines/pharmacology , Polyunsaturated Alkamides , Prefrontal Cortex/cytology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Rimonabant , Synaptic Transmission , tat Gene Products, Human Immunodeficiency Virus/toxicity
7.
J Neuroimmune Pharmacol ; 11(2): 316-31, 2016 06.
Article in English | MEDLINE | ID: mdl-26993829

ABSTRACT

In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is now considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids exhibit neuroprotective and anti-inflammatory properties in several central nervous system (CNS) disease models, but their effects in HAND are poorly understood. To address this issue, whole-cell recordings were performed on young (14-24 day old) C57BL/6J mice. We investigated the actions of the synthetic cannabinoid WIN55,212-2 (1 µM) and the endocannabinoid N-arachidonoyl ethanolamine (anandamide; AEA, 1 µM) in the presence of HIV-1 Tat on GABAergic neurotransmission in mouse prefrontal cortex (PFC) slices. We found a Tat concentration-dependent (5-50 nM) decrease in the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid 1 receptor (CB1R) antagonist rimonabant (1 µM) and zero extracellular calcium prevented the significant Tat-induced decrease in mIPSCs. Further, bath-applied WIN55,212-2 or AEA by itself, significantly decreased the frequency, but not amplitude of mIPSCs and/or spontaneous IPSCs (sIPSCs), and occluded a further downregulation of IPSCs by Tat. Pretreatment with rimonabant but not the CB2R antagonist AM630 (1 µM) prevented the WIN55,212-2- and AEA-induced decrease in IPSCs frequency without any further Tat effect. Results indicated a Tat-induced decrease in GABAergic neurotransmission, which was occluded by cannabinoids via a CB1R-related mechanism. Understanding the relationship between Tat toxicity and endocannabinoid signaling has the potential to identify novel therapeutic interventions to benefit individuals suffering from HAND and other cognitive impairments.


Subject(s)
Cannabinoids/pharmacology , GABAergic Neurons/drug effects , HIV-1 , Prefrontal Cortex/drug effects , Synaptic Transmission/drug effects , tat Gene Products, Human Immunodeficiency Virus/pharmacology , Animals , Benzoxazines/pharmacology , Dose-Response Relationship, Drug , Female , GABAergic Neurons/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Male , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Naphthalenes/pharmacology , Organ Culture Techniques , Prefrontal Cortex/metabolism , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Synaptic Transmission/physiology
8.
Cereb Cortex ; 26(5): 1938-1956, 2016 May.
Article in English | MEDLINE | ID: mdl-25662825

ABSTRACT

Frontal cortical dysfunction is thought to contribute to cognitive and behavioral features of autism spectrum disorders; however, underlying mechanisms are poorly understood. The present study sought to define how loss of Mecp2, the gene mutated in Rett syndrome (RTT), disrupts function in the murine medial prefrontal cortex (mPFC) using acute brain slices and behavioral testing. Compared with wildtype, pyramidal neurons in the Mecp2 null mPFC exhibit significant reductions in excitatory postsynaptic currents, the duration of excitatory UP-states, evoked population activity, and the ratio of NMDA:AMPA currents, as well as an increase in the relative fraction of NR2B currents. These functional changes are associated with reductions in the density of excitatory dendritic spines, the ratio of vesicular glutamate to GABA transporters and GluN1 expression. In contrast to recent reports on circuit defects in other brain regions, we observed no effect of Mecp2 loss on inhibitory synaptic currents or expression of the inhibitory marker parvalbumin. Consistent with mPFC hypofunction, Mecp2 nulls exhibit respiratory dysregulation in response to behavioral arousal. Our data highlight functional hypoconnectivity in the mPFC as a potential substrate for behavioral disruption in RTT and other disorders associated with reduced expression of Mecp2 in frontal cortical regions.


Subject(s)
Membrane Potentials , Methyl-CpG-Binding Protein 2/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Rett Syndrome/genetics , Action Potentials , Animals , Calcium Signaling , Dendritic Spines , Electric Stimulation , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Neurons/cytology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Respiration/genetics , Rett Syndrome/physiopathology , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL