Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925248

ABSTRACT

In retinal organ cultures, H2O2 can be used to simulate oxidative stress, which plays a role in the development of several retinal diseases including glaucoma. We investigated whether processes underlying oxidative stress can be prevented in retinal organ cultures by an inducible nitric oxide synthase (iNOS)-inhibitor. To this end, porcine retinal explants were cultivated for four and eight days. Oxidative stress was induced via 300 µM H2O2 on day one for three hours. Treatment with the iNOS-inhibitor 1400 W was applied simultaneously, remaining for 72 h. Retinal ganglion cells (RGC), bipolar and amacrine cells, apoptosis, autophagy, and hypoxia were evaluated immunohistologically and by RT-qPCR. Additionally, RGC morphology was analyzed via transmission electron microscopy. H2O2-induced RGCs loss after four days was prevented by the iNOS-inhibitor. Additionally, electron microscopy revealed a preservation from oxidative stress in iNOS-inhibitor treated retinas at four and eight days. A late rescue of bipolar cells was seen in iNOS-inhibitor treated retinas after eight days. Hypoxic stress and apoptosis almost reached the control situation after iNOS-inhibitor treatment, especially after four days. In sum, the iNOS-inhibitor was able to prevent strong H2O-induced degeneration in porcine retinas. Hence, this inhibitor seems to be a promising treatment option for retinal diseases.

2.
J Cell Mol Med ; 24(7): 4312-4323, 2020 04.
Article in English | MEDLINE | ID: mdl-32130787

ABSTRACT

Nitrite oxide plays an important role in the pathogenesis of various retinal diseases, especially when hypoxic processes are involved. This degeneration can be simulated by incubating porcine retinal explants with CoCl2 . Here, the therapeutic potential of iNOS-inhibitor 1400W was evaluated. Degeneration through CoCl2 and treatment with the 1400W were applied simultaneously to porcine retinae explants. Three groups were compared: control, CoCl2 , and CoCl2  + iNOS-inhibitor (1400W). At days 4 and 8, retinal ganglion cells (RGCs), bipolar, and amacrine cells were analysed. Furthermore, the influence on the glia cells and different stress markers were evaluated. Treatment with CoCl2 resulted in a significant loss of RGCs already after 4 days, which was counteracted by the iNOS-inhibitor. Expression of HIF-1α and its downstream targets confirmed the effective treatment with 1400W. After 8 days, the CoCl2 group displayed a significant loss in amacrine cells and also a drastic reduction in bipolar cells was observed, which was prevented by 1400W. The decrease in microglia could not be prevented by the inhibitor. CoCl2 induces strong degeneration in porcine retinae by mimicking hypoxia, damaging certain retinal cell types. Treatment with the iNOS-inhibitor counteracted these effects to some extent, by preventing loss of retinal ganglion and bipolar cells. Hence, this inhibitor seems to be a very promising treatment for retinal diseases.


Subject(s)
Amidines/pharmacology , Benzylamines/pharmacology , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Retinal Diseases/drug therapy , Amacrine Cells/drug effects , Animals , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Disease Models, Animal , Humans , Microglia/drug effects , Microglia/pathology , Neuroprotection/drug effects , Nitric Oxide Synthase Type II/genetics , Organ Culture Techniques , Retina/drug effects , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Swine
3.
Sci Rep ; 9(1): 4898, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894574

ABSTRACT

Simulation of hypoxic processes in vitro can be achieved through cobalt chloride (CoCl2), which induces strong neurodegeneration. Hypoxia plays an important role in the progression of several retinal diseases. Thus, we investigated whether hypoxia can be reduced by hypothermia. Porcine retinal explants were cultivated for four and eight days and hypoxia was mimicked by adding 300 µM CoCl2 from day one to day three. Hypothermia treatment (30 °C) was applied simultaneously. Retinal ganglion, bipolar and amacrine cells, as well as microglia were evaluated via immunohistological and western blot analysis. Furthermore, quantitative real-time PCR was performed to analyze cellular stress and apoptosis. In addition, the expression of specific marker for the previously described cell types were investigated. A reduction of ROS and stress markers HSP70, iNOS, HIF-1α was achieved via hypothermia. In accordance, an inhibition of apoptotic proteins (caspase 3, caspase 8) and the cell cycle arrest gene p21 was found in hypothermia treated retinae. Furthermore, neurons of the inner retina were protected by hypothermia. In this study, we demonstrate that hypothermia lowers hypoxic processes and cellular stress. Additionally, hypothermia inhibits apoptosis and protects neurons. Hence, this seems to be a promising treatment for retinal neurodegeneration.


Subject(s)
Amacrine Cells , Cold Temperature , Microglia , Retinal Bipolar Cells , Retinal Ganglion Cells , Amacrine Cells/metabolism , Amacrine Cells/pathology , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Biomarkers/metabolism , Cell Hypoxia , Cobalt , In Vitro Techniques , Microglia/metabolism , Microglia/pathology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Reactive Oxygen Species/metabolism , Retinal Bipolar Cells/metabolism , Retinal Bipolar Cells/pathology , Retinal Diseases/pathology , Retinal Diseases/therapy , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...