Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1138456, 2023.
Article in English | MEDLINE | ID: mdl-37091675

ABSTRACT

Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.


Subject(s)
Adaptation, Physiological , Chagas Disease , Insecta , Life Cycle Stages , Starvation , Trypanosoma cruzi , Animals , Cell Differentiation , Chagas Disease/genetics , Chagas Disease/metabolism , Chagas Disease/parasitology , Insecta/metabolism , Insecta/parasitology , Insecta/physiology , Mammals/parasitology , Transcriptome/genetics , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/physiology , Starvation/genetics , Starvation/parasitology , Starvation/physiopathology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Life Cycle Stages/genetics , Life Cycle Stages/physiology
3.
Biometals ; 31(6): 961-974, 2018 12.
Article in English | MEDLINE | ID: mdl-30259247

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It is estimated that 6 million people are infected in Latin America. Current treatment is not effective due to the severe side effects and the limited efficacy towards the chronic phase of the disease. Considering the growing need for specific anti-Trypanosoma cruzi drugs, organometallic Pt and Pd based compounds were previously synthesized. Although the Pt-based compound effects on T. cruzi death have been reported, no mechanism of action has been proposed for the Pd-based analogous compound. In this work, we determined excellent to very good values of IC50 and SI. To analyze the compound mode of action, we measured Pd uptake and its association to the macromolecules of the parasite by electrothermal atomic absorption spectrometry. We found a poor uptake, which reaches only 16% after 24 h of incubation using 10× IC50, being the scarce incorporated metal preferentially associated to DNA. However, this compound has a trypanocidal effect, leading to morphological changes such as shortening of the parasite cell body and inducing necrosis after 24 h of treatment. Furthermore, this compound impairs the parasite development in the host both at the trypomastigote infection process and the intracellular amastigotes replication. In conclusion, our findings support that Pd-dppf-mpo compound constitutes a promising anti-T. cruzi compound effective against the chronic phase of the disease.


Subject(s)
Organometallic Compounds/pharmacology , Palladium/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/cytology
4.
Chem Biol Drug Des ; 92(3): 1657-1669, 2018 09.
Article in English | MEDLINE | ID: mdl-29745031

ABSTRACT

Chagas disease is an endemic illness in Latin America caused by the parasite Trypanosoma cruzi. Current chemotherapies are old and inadequate, and the emergence of drug-resistant strains underscores the need of new drugs. Platinum-based complexes have been shown to be a promising approach against parasitic diseases. In this work, the effect of 1,1'-bis(diphenylphosphino)ferrocene pyridine-2-thiolate-1-oxide Pt(II) hexafluorophosphate, Pt-dppf-mpo, was studied on T. cruzi. A promising antitrypanosomal activity was determined for the CL Brener strain with a low cytotoxicity determined using in vitro-cultured mammal cells. The compound uptake in parasites treated with concentrations of 1× and 10× the IC50 value reached ~75% and 19%, respectively. Pt-dppf-mpo induced necrosis after 24 hr of parasite incubation. This event was preceded by depolarization of mitochondrial membrane potential. Cell vitality assays showed high esterase activity in treated parasites. However, despite this increase in metabolic activity, treated epimastigotes showed rounded morphology and loss of flagellum with a reduction in mobility as compound concentration and/or time of incubation was increased. At last, we demonstrate that Pt-dppf-mpo incubation also affects the trypomastigote infection process as well as the infection persistence evaluated as the number of amastigotes per cell in a dose-dependent manner.


Subject(s)
Organoplatinum Compounds/chemistry , Trypanocidal Agents/chemistry , Animals , Chlorocebus aethiops , Ferrous Compounds/chemistry , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Metallocenes/chemistry , Microscopy , Organoplatinum Compounds/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...