Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Microbiol Res ; 286: 127790, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851009

ABSTRACT

Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.

2.
Heliyon ; 10(9): e30539, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38742058

ABSTRACT

Despite the significant health risks associated with Dermanyssus gallinae infestations in humans, they are often overlooked. This study investigated a household case of D. gallinae infestation and explored the resulting clinical manifestations and risk of infection in family members. Microfluidic PCR was employed for high-throughput screening of pathogens in collected mites and blood samples from both chickens and family members. Morphological and molecular examinations confirmed the identity of the mites as D. gallinae sensu stricto (s.s.), with evidence indicating recent blood feeding. Results indicated that the mites exclusively harbored various pathogens, including Bartonella spp., Ehrlichia spp., Apicomplexa, and Theileria spp. Blood samples from family members and poultry tested negative for these pathogens, suggesting a potential reservoir role for D. gallinae. The study further identified haplotypes of D. gallinae, classifying them into D. gallinae s.s., cosmopolitan haplogroup A. Serological analysis revealed elevated IgE seroreactivity against mite proteins in the family member with bite lesions. Antibodies against Bartonella spp. were detected in this individual, indicating exposure to the pathogen. In summary, this study sheds light on the clinical manifestations, pathogen detection, and genetic characterization of D. gallinae infestations, underscoring the necessity of adopting comprehensive approaches to manage such infestations effectively.

3.
PLoS One ; 19(5): e0304092, 2024.
Article in English | MEDLINE | ID: mdl-38787900

ABSTRACT

AIM: To analyze the relationship between burnout syndrome, cognitive functions, and sBDNF (Serum Brain-derived Neurotrophic Factor) in Mexican nurses. METHOD: A descriptive cross-sectional design was used. This study target staff nurses working in hospitals in Guanajuato, México. Demographic and working condition data were collected via questionnaire. The Maslach Burnout Inventory (MBI) was used to evaluate burnout. A blood sample were collected and processed by ELISA technique to measure sBDNF. Finally, the General Cognitive Assessment (CAB) of the Cognifit© neuropsychological battery was used to evaluated cognitive functions. RESULTS: Findings showed that there are sociodemographic characteristics and working conditions associated with burnout syndrome among nurses. Furthermore, the data demonstrated a significant decrease in sBDNF levels in burnout nurses and a negative correlation between BDNF levels and burnout syndrome. Additionally, these burnout nurse also revealed significant cognitive impairment in reasoning, memory, and attention as well as total scores of CAB. Interestingly, we found a positive correlation between sBDNF levels and the cognitive deficits in burnout nurse. CONCLUSION: Reduced BDNF levels could be a biological indicator or part of the pathological process of burnout, which could affect cognitive abilities. Reduced cognitive function in nurses has relevant implications and emphasizes the need for specialized preventive strategies because nurses make clinical decisions concerning their patients, whose situations are constantly changing.


Subject(s)
Brain-Derived Neurotrophic Factor , Burnout, Professional , Cognition , Humans , Brain-Derived Neurotrophic Factor/blood , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Mexico/epidemiology , Female , Adult , Cognition/physiology , Male , Cross-Sectional Studies , Nursing Staff, Hospital/psychology , Nursing Staff, Hospital/statistics & numerical data , Middle Aged , Nurses/psychology , Surveys and Questionnaires , Young Adult
4.
Article in English | MEDLINE | ID: mdl-38765730

ABSTRACT

Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.

5.
Heliyon ; 10(10): e30914, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784541

ABSTRACT

Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.

6.
Ecol Evol ; 14(4): e11228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571811

ABSTRACT

Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.

7.
Front Immunol ; 15: 1368599, 2024.
Article in English | MEDLINE | ID: mdl-38558802

ABSTRACT

Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.


Subject(s)
Dengue Virus , Dengue , Microbiota , Animals , Humans , Antibodies, Neutralizing , Mosquito Vectors
8.
Pathogens ; 13(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276164

ABSTRACT

Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.

9.
Parasit Vectors ; 17(1): 5, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178247

ABSTRACT

BACKGROUND: Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS: A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS: The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS: Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.


Subject(s)
Dog Diseases , Rhipicephalus sanguineus , Tick-Borne Diseases , Humans , Animals , Dogs , Phylogeny , Cross-Sectional Studies , Microfluidics , Anaplasma/genetics , Ehrlichia canis/genetics , Rhipicephalus sanguineus/microbiology , Polymerase Chain Reaction , Dog Diseases/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology
10.
Clin Investig Arterioscler ; 36(4): 201-209, 2024.
Article in English, Spanish | MEDLINE | ID: mdl-38216379

ABSTRACT

OBJECTIVE: To assess thrombotic risk with PAI-1 levels in patients with COVID-19, to evaluate PAI-1 differences between hyperglycemic and/or Type 2 Diabetes Mellitus (T2DM) versus non-hyperglycemic patients, and to analyze the association of plasminogen activator inhibitor-1 (PAI-1) with hyperglycemia and T2DM. METHODS: A cross-sectional study carried out in 181 patients hospitalized for COVID-19. Two groups were formed: the patients with hyperglycemia at admission and/or previously diagnosed T2DM group and the non-hyperglycemic group. Fibrinolysis was assessed by measuring PAI-1 levels by ELISA. RESULTS: The mean age was 59.4±16.1 years; 55.8% were male 54.1% of patients presented obesity, 38.1% had pre-existing T2DM and 50.8% had admission hyperglycemia and/or pre-existing T2DM. The patients with admission hyperglycemia and/or preexisting T2DM had higher PAI-1 compared with non-hyperglycemic patients [197.5 (128.8-315.9) vs 158.1 (113.4-201.4) ng/mL; p=0.031]. The glucose levels showed a positive correlation with PAI-1 levels (r=0.284, p=0.041). A multivariate logistic regression analysis showed association of PAI-1 level and hyperglycemia and pre-existing T2DM with severity of COVID-19. CONCLUSION: Patients hospitalized for COVID-19 infection with preexisting T2DM or hyperglycemia detected during their hospitalization presented a greater increase in PAI-1 levels, which suggests that hyperglycemia contributes directly to the hypercoagulable state and probably a worse outcome from the patients.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hyperglycemia , Plasminogen Activator Inhibitor 1 , Thrombosis , Humans , COVID-19/complications , Plasminogen Activator Inhibitor 1/blood , Male , Middle Aged , Cross-Sectional Studies , Female , Diabetes Mellitus, Type 2/complications , Aged , Thrombosis/etiology , Risk Factors , Blood Glucose/metabolism , Adult , Hospitalization/statistics & numerical data , Enzyme-Linked Immunosorbent Assay
11.
Front Bioeng Biotechnol ; 11: 1287551, 2023.
Article in English | MEDLINE | ID: mdl-38050488

ABSTRACT

We have developed a single process for producing two key COVID-19 vaccine antigens: SARS-CoV-2 receptor binding domain (RBD) monomer and dimer. These antigens are featured in various COVID-19 vaccine formats, including SOBERANA 01 and the licensed SOBERANA 02, and SOBERANA Plus. Our approach involves expressing RBD (319-541)-His6 in Chinese hamster ovary (CHO)-K1 cells, generating and characterizing oligoclones, and selecting the best RBD-producing clones. Critical parameters such as copper supplementation in the culture medium and cell viability influenced the yield of RBD dimer. The purification of RBD involved standard immobilized metal ion affinity chromatography (IMAC), ion exchange chromatography, and size exclusion chromatography. Our findings suggest that copper can improve IMAC performance. Efficient RBD production was achieved using small-scale bioreactor cell culture (2 L). The two RBD forms - monomeric and dimeric RBD - were also produced on a large scale (500 L). This study represents the first large-scale application of perfusion culture for the production of RBD antigens. We conducted a thorough analysis of the purified RBD antigens, which encompassed primary structure, protein integrity, N-glycosylation, size, purity, secondary and tertiary structures, isoform composition, hydrophobicity, and long-term stability. Additionally, we investigated RBD-ACE2 interactions, in vitro ACE2 recognition of RBD, and the immunogenicity of RBD antigens in mice. We have determined that both the monomeric and dimeric RBD antigens possess the necessary quality attributes for vaccine production. By enabling the customizable production of both RBD forms, this unified manufacturing process provides the required flexibility to adapt rapidly to the ever-changing demands of emerging SARS-CoV-2 variants and different COVID-19 vaccine platforms.

12.
Int J Parasitol Drugs Drug Resist ; 23: 130-139, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38043189

ABSTRACT

The physiological significance of metabotropic acetylcholine receptors in parasitic nematodes remains largely unexplored. Here, three different Trichinella spiralis G protein-coupled acetylcholine receptors (TsGAR-1, -2, and -3) were identified in the genome of T. spiralis. The phylogenetic analyses showed that TsGAR-1 and -2 receptors belong to a distinct clade specific to invertebrates, while TsGAR-3 is closest to the cluster of mammalian-type muscarinic acetylcholine receptors (mAChR). The mRNA of TsGAR-1, -2, and -3 was detected in muscle larvae, newborn larvae, and adults. The functional aequorin-based assay in Chinese hamster ovary cells revealed that all three types of T. spiralis GARs trigger the Gq/11 pathway upon activation of the receptor with the acetylcholine ligand. TsGAR-1 and TsGAR-2 showed atypical affinity with classical muscarinic agonists, while TsGAR-3 was sensitive to all muscarinic agonists tested. High concentrations of propiverine antagonist blocked the activities of all three TsGARs, while atropine and scopolamine antagonists effectively inhibited only TsGAR-3. Our data indicate that the distinct pharmacological profile of TsGAR-1 and -2 receptors, as well as the phylogenetic distance between them and their mammalian orthologs, place them as attractive targets for the development of selective anthelmintic drugs interfering with nematodes' cholinergic system.


Subject(s)
Acetylcholine , Trichinella spiralis , Animals , Cricetinae , Infant, Newborn , Humans , Acetylcholine/pharmacology , Muscarinic Agonists/pharmacology , Trichinella spiralis/genetics , CHO Cells , Phylogeny , Cricetulus , Receptors, G-Protein-Coupled , Receptors, Cholinergic/genetics , GTP-Binding Proteins
13.
Pathogens ; 12(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38133283

ABSTRACT

Anthropogenic electromagnetic radiation is an important environmental factor affecting the functionality of biological systems. Sensitivity to various frequencies of electromagnetic radiation has been detected in ixodid ticks in the past. However, the physiological aspects of radiation effects have not yet been studied in ticks. In the presented experiment, 360 Ixodes ricinus ticks, 180 males and 180 females, were divided into 16 irradiated and 8 control groups. The irradiated groups were exposed to two different intensities of electromagnetic radiation with a frequency of 900 MHz at different lengths of exposure time. RT-PCR was utilized to determine the changes in mRNA levels in tick synganglia after irradiation. Four randomly selected neuropeptide genes were tested-allatotropin (at), FGLa-related allatostatins (fgla/ast), kinin, and arginine-vasopressin-like peptide (avpl). A significant decrease in transcript levels in all female groups exposed to higher intensity radiofrequency radiation for 1 to 3 h was found. After one hour of radiofrequency exposure, a significant downregulation in allatotropin expression in males was detected. A consistent downregulation of the at gene was detected in males irradiated with at a higher intensity. Unfortunately, the specific functions of the studied neuropeptides in ticks are not known yet, so a more comprehensive study is necessary to describe the effects of EMF on observed neuropeptides. This study represents the first report on the effects of the abiotic environment on tick neurophysiology.

14.
J Pharmacol Toxicol Methods ; 124: 107473, 2023.
Article in English | MEDLINE | ID: mdl-37866797

ABSTRACT

The central nervous system of hard ticks (Ixodidae) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. Method: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and muscarine. Relatively large neurons (∼ 25 µm and âˆ¼ 35 µm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of -0.38 ± 0.1 nA and - 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 µm and âˆ¼ 35 µm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.


Subject(s)
Ixodes , Animals , Ixodes/metabolism , Nicotine/pharmacology , Nicotine/metabolism , Acetylcholine/pharmacology , Acetylcholine/metabolism , Calcium/metabolism , Muscarine/metabolism , Muscarine/pharmacology , Neurons
15.
Front Microbiol ; 14: 1247719, 2023.
Article in English | MEDLINE | ID: mdl-37860133

ABSTRACT

The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and ß diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.

16.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-37898556

ABSTRACT

Recent studies show that mosquito-microbiota interactions affects vector competence and fitness. We investigated if host antibodies modifying microbiota impact mosquito physiology. We focused on three prevalent bacteria (Acinetobacter, Pantoea, and Chryseobacterium), originally isolated from the Asian tiger mosquito Aedes albopictus. Our goal was to assess the impact of host antibodies on mosquito microbiota and life traits. Female mosquitoes were fed with blood from rabbits immunized with each bacterium or a mock vaccine. We compared various factors, including feeding behavior, survival rates, and reproductive success of the mosquitoes. Interestingly, mosquitoes fed with blood from a Chryseobacterium-immunized rabbit showed a significant increase in fecundity and egg-hatching rate. This outcome correlated with a decrease in the abundance of Chryseobacterium within the mosquito microbiota. While no significant changes were observed in the alpha and beta diversity indexes between the groups, our network analyses revealed an important finding. The antimicrobiota vaccines had a considerable impact on the bacterial community assembly. They reduced network robustness, and altered the hierarchical organization of nodes in the networks. Our findings provide the basis for the rational design of antimicrobiota vaccines to reduce mosquito fitness and potentially induce infection-refractory states in the microbiota to block pathogen transmission.


Subject(s)
Aedes , Microbiota , Animals , Female , Rabbits , Aedes/microbiology , Mosquito Vectors , Fertility , Reproduction , Bacteria
17.
Pathogens ; 12(8)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37623958

ABSTRACT

Tick-borne pathogens (TBPs) pose a significant threat to livestock, including bovine species. This study aimed to investigate TBPs in cattle and ticks across four sampling points, utilizing real-time microfluidic PCR. The results revealed that Rhipicephalus microplus ticks were found infesting all animals. Among the detected TBPs in cattle, Anaplasma marginale was the most frequently identified, often as a single infection, although mixed infections involving Rickettsia felis, uncharacterized Rickettsia sp., and Anaplasma sp. were also observed. In ticks, A. marginale was predominant, along with R. felis, Rickettsia sp., and Ehrlichia sp. It is noteworthy that although A. marginale consistently infected all cattle during various sampling times, this pathogen was not detected in all ticks. This suggests a complex dynamic of pathogen acquisition by ticks. A phylogenetic analysis focused on the identification of Anaplasma species using amplified 16S rDNA gene fragments revealed the presence of A. marginale and Anaplasma platys strains in bovines. These findings underscore the presence of multiple TBPs in both cattle and ticks, with A. marginale being the most prevalent. Understanding the dynamics and phylogenetics of TBPs is crucial for developing effective control strategies to mitigate tick-borne diseases in livestock.

18.
Microbiome ; 11(1): 151, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37482606

ABSTRACT

BACKGROUND: Ticks can transmit a broad variety of pathogens of medical importance, including Borrelia afzelii, the causative agent of Lyme borreliosis in Europe. Tick microbiota is an important factor modulating, not only vector physiology, but also the vector competence. Anti-microbiota vaccines targeting keystone taxa of tick microbiota can alter tick feeding and modulate the taxonomic and functional profiles of bacterial communities in the vector. However, the impact of anti-microbiota vaccine on tick-borne pathogen development within the vector has not been tested. RESULTS: Here, we characterized the Ixodes ricinus microbiota modulation in response to B. afzelii infection and found that the pathogen induces changes in the microbiota composition, its beta diversity and structure of bacterial community assembly. Tick microbiota perturbation by anti-microbiota antibodies or addition of novel commensal bacteria into tick midguts causes departures from the B. afzelii-induced modulation of tick microbiota which resulted in a lower load of the pathogen in I. ricinus. Co-occurrence networks allowed the identification of emergent properties of the bacterial communities which better defined the Borrelia infection-refractory states of the tick microbiota. CONCLUSIONS: These findings suggest that Borrelia is highly sensitive to tick microbiota perturbations and that departure from the modulation induced by the pathogen in the vector microbiota pose a high cost to the spirochete. Network analysis emerges as a suitable tool to identify emergent properties of the vector microbiota associated with infection-refractory states. Anti-microbiota vaccines can be used as a tool for microbiota perturbation and control of important vector-borne pathogens. Video Abstract.


Subject(s)
Borrelia burgdorferi Group , Ixodes , Lyme Disease , Animals , Ixodes/microbiology , Ixodes/physiology , Borrelia burgdorferi Group/physiology , Lyme Disease/microbiology , Bacteria , Europe
19.
J Pediatr Endocrinol Metab ; 36(8): 782-785, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37307239

ABSTRACT

OBJECTIVES: To present a case of a new pathogenic variant of DICER1. CASE PRESENTATION: 13-year-old female with non-toxic multinodular goiter and ovarian Sertoli-Leydig cell tumor, in whom a pineal parenchymal tumor of intermediate differentiation was diagnosed. Next-generation sequencing revealed a new germline mutation in the DICER1 gene (exon 16, c2488del [pGlu830Serfs*2] in heterozygosis), establishing the diagnosis of DICER1 syndrome. CONCLUSIONS: Mutations in the DICER1 gene cause genetic predisposition to a wide spectrum of benign or malignant tumors from childhood to adulthood.


Subject(s)
Brain Neoplasms , Goiter , Ovarian Neoplasms , Pineal Gland , Pinealoma , Sertoli-Leydig Cell Tumor , Male , Female , Humans , Adolescent , Child , Young Adult , Sertoli-Leydig Cell Tumor/genetics , Sertoli-Leydig Cell Tumor/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pineal Gland/pathology , Cell Differentiation/genetics , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
20.
Microbiol Res ; 274: 127418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315341

ABSTRACT

The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.


Subject(s)
Gastrointestinal Microbiome , RNA Viruses , Varroidae , Virus Diseases , Viruses , Animals , Bees
SELECTION OF CITATIONS
SEARCH DETAIL
...