Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Comp Immunol Microbiol Infect Dis ; 94: 101944, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638645

ABSTRACT

Brucellosis is a zoonosis caused by Brucella; B. melitensis is the most prevalent species in goats and humans. Previously, three B. melitensis peptides, rBtuB-Hia-FlgK showed antigen-specific immune responses in rodent models. The goal of this study was to evaluate the goat Th1/Th2 immune response to B. melitensis peptides. Twenty-eight animals were separated into four groups and were immunized with the rBtuB-Hia-FlgK peptides cocktail, adjuvant, PBS and Rev-1 vaccine, respectively. Peripheral blood samples were collected on days 0, 15, and 80 post-inoculation. The CD4+ and CD8+ T cells proliferation, and cytokine production of the Th-1 (IL-2, IL-12, TNF-α, and IFN-γ) and Th-2 profiles (IL-4, IL-5, and IL-10) were evaluated. An increase of CD4+/CD8+ at 15 days post-vaccination was observed and continued until the 80th. In addition, the IFN-γ, TNF-α, and IL-2 mRNA expression were typically induced by the 15th day, but only IFN-γ levels were observed at day 80 post-immunization. Brucella pathogenesis is distinguished by the presence of a large amount of Th-1 cytokines. Although a reduced amount of IFN-γ in the culture supernatant was accurately detected compared with Rev-1 after 15 days, it could be influenced by the sampling schedule, as a higher cytokine production might be induced as early as the first-week post-vaccination. The results indicate that rBtuB-Hia-FlgK induced an immune response similar to the Rev-1 vaccine. The possible use of inert molecules with the unique ability to typically induce cellular response similar to attenuated vaccine represents an attractive option that should not be ruled out.


Subject(s)
Brucella Vaccine , Brucella melitensis , Brucellosis , Goat Diseases , Humans , Animals , Mice , Interleukin-2 , Goats , Tumor Necrosis Factor-alpha , Brucellosis/veterinary , Peptides , Immunity, Cellular , Cytokines , Mice, Inbred BALB C , Goat Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL