Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Mol Membr Biol ; 31(4): 120-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24826799

ABSTRACT

Förster resonance energy transfer (FRET) is a photophysical process by which a donor (D) molecule in an electronic excited state transfers its excitation energy to a second species, the acceptor (A). Since FRET efficiency depends on D-A separation, the measurement of donor fluorescence in presence and absence of the acceptor allows determination of this distance, and therefore FRET has been extensively used as a "spectroscopic ruler". In membranes, interpretation of FRET is more complex, since one D may be surrounded by many A molecules. Such is the case encountered with membrane proteins and lipids in the bilayer. This paper reviews the application of a model built to analyze FRET data between a single tryptophan mutant of the transmembrane protein lactose permease (W151/C154G of LacY), the sugar/H(+) symporter from Escherichia coli, and different pyrene-labeled phospholipids. Several variables of the system with biological implication have been investigated: The selectivity of LacY for different species of phospholipids, the enhancement of the sensitivity of the FRET modeling, and the mutation of a particular aminoacid (D68C) of the protein. The results obtained support: (i) Preference of LacY for phosphatidylethanolamine (PE) over phosphatidylglycerol (PG); (ii) affinity of LacY for fluid (L(α)) phases; and (iii) importance of the aspartic acid in position 68 in the sequence of LacY regarding the interaction with the phospholipid environment. Besides, by exploring the enhancement of the sensitivity by using pure lipid matrices with higher mole fractions of labelled-phospholipid, the dependence on acyl chain composition is unveiled.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/enzymology , Fluorescence Resonance Energy Transfer , Membrane Transport Proteins/genetics , Monosaccharide Transport Proteins/genetics , Phospholipids/chemistry , Symporters/genetics , Amino Acid Substitution , Cell Membrane/physiology , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/chemistry , Monosaccharide Transport Proteins/chemistry , Mutation , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Symporters/chemistry
2.
Biochim Biophys Acta ; 1838(3): 842-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24316189

ABSTRACT

In this paper we present a comparative study of supported lipid bilayers (SLBs) and proteolipid sheets (PLSs) obtained from deposition of lactose permease (LacY) of Escherichia coli proteoliposomes in plane. Lipid matrices of two components, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), at a 3:1, mol/mol ratio, were selected to mimic the inner membrane of the bacteria. The aim was to investigate how species of different compactness and stiffness affect the integration, distribution and nanomechanical properties of LacY in mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or 1,2-palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG). Both compositions displayed phase separation and were investigated by atomic force microscopy (AFM) imaging and force-spectroscopy (FS) mode. PLSs displayed two separated, segregated domains with different features that were characterised by FS and force-volume mode. We correlated the nanomechanical characteristics of solid-like gel phase (Lß) and fluid liquid-crystalline phase (Lα) with phases emerging in presence of LacY. We observed that for both compositions, the extended PLSs showed a Lß apparently formed only by lipids, whilst the second domain was enriched in LacY. The influence of the lipid environment on LacY organisation was studied by performing protein unfolding experiments using the AFM tip. Although the pulling experiments were unspecific, positive events were obtained, indicating the influence of the lipid environment when pulling the protein. A possible influence of the lateral surface pressure on this behaviour is suggested by the higher force required to pull LacY from DPPE:POPG than from POPE:POPG matrices. This is related to higher forces governing protein-lipid interaction in presence of DPPE.


Subject(s)
Lipid Bilayers/chemistry , Membrane Transport Proteins/metabolism , Nanotechnology , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Proteolipids/chemistry , Lipid Bilayers/metabolism , Mechanical Phenomena , Microscopy, Atomic Force
3.
Int J Pharm ; 461(1-2): 427-36, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24361268

ABSTRACT

Transdermal delivery of active principles is a versatile method widely used in medicine. The main drawback for the transdermal route, however, is the low efficiency achieved in the absorption of many drugs, mostly due to the complexity of the skin barrier. To improve drug delivery through the skin, we prepared and characterized liposomes loaded with ibuprofen and designed pharmaceutical formulations based on the extemporaneous addition of penetration enhancer (PE) surfactants. Afterwards, permeation and release studies were carried out. According to the permeation studies, the ibuprofen liposomal formulation supplemented with PEs exhibited similar therapeutic effects, but at lower doses (20%) comparing with a commercial formulation used as a reference. Atomic force microscopy (AFM) was used to investigate the effect caused by PEs on the adsorption mechanism of liposomal formulations onto the skin. Non-fused liposomes, bilayers and multilayered lipid structures were observed. The transformation of vesicles into planar structures is proposed as a possible rationale for explaining the lower doses required when a liposome formulation is supplemented with surfactant PEs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Drug Delivery Systems , Ibuprofen/administration & dosage , Skin Absorption , Administration, Cutaneous , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Chemistry, Pharmaceutical/methods , Female , Humans , Ibuprofen/pharmacokinetics , Lipid Bilayers/metabolism , Liposomes , Microscopy, Atomic Force , Skin/metabolism , Surface-Active Agents/chemistry
4.
J Phys Chem B ; 117(22): 6741-8, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23647499

ABSTRACT

Förster resonance energy transfer (FRET) measurements were performed in preceding works to study the selectivity between a single-tryptophan mutant of lactose permease (LacY) of Escherichia coli (used as the donor) and phospholipid probes labeled with pyrene at the acyl chain moiety (used as the acceptor). In the present work, we report the results obtained by using the same LacY mutant (W151/C154G) and binary lipid mixtures of phosphatidylethanolamine (PE) differing in the acyl chain composition and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) (3:1 mol/mol) doped with a phospholipid probe labeled with pyrene at the headgroup. The use of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(1-pyrenesulfonyl) ammonium salt (HPyr-PE), which bears two unsaturated acyl chains, enabled the investigation of the specific interaction between LacY and HPyr-PE. The main conclusions raised from our results suggest that (i) for phase-separated systems, LacY would be located in fluid domains nominally enriched in POPG, and if a given proportion of PE is present in this phase, it will be mainly located around LacY; and (ii) in the absence of phase separation, LacY is preferentially surrounded by PE and, in particular, seems to be sensitive to the lipid spontaneous curvature.


Subject(s)
Membrane Transport Proteins/chemistry , Phosphatidylethanolamines/chemistry , Phospholipids/chemistry , Pyrenes/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Fluorescence Resonance Energy Transfer , Membrane Transport Proteins/metabolism , Phosphatidylcholines/chemistry , Phospholipids/metabolism
5.
Chem Phys Lipids ; 165(8): 845-60, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23194897

ABSTRACT

Atomic force microscopy (AFM) was developed in the 1980s following the invention of its precursor, scanning tunneling microscopy (STM), earlier in the decade. Several modes of operation have evolved, demonstrating the extreme versatility of this method for measuring the physicochemical properties of samples at the nanoscopic scale. AFM has proved an invaluable technique for visualizing the topographic characteristics of phospholipid monolayers and bilayers, such as roughness, height or laterally segregated domains. Implemented modes such as phase imaging have also provided criteria for discriminating the viscoelastic properties of different supported lipid bilayer (SLB) regions. In this review, we focus on the AFM force spectroscopy (FS) mode, which enables determination of the nanomechanical properties of membrane models. The interpretation of force curves is presented, together with newly emerging techniques that provide complementary information on physicochemical properties that may contribute to our understanding of the structure and function of biomembranes. Since AFM is an imaging technique, some basic indications on how real-time AFM imaging is evolving are also presented at the end of this paper.


Subject(s)
Lipid Bilayers/chemistry , Microscopy, Atomic Force , Nanotechnology , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phase Transition , Phosphatidylcholines/chemistry
6.
J Phys Chem B ; 116(48): 14023-8, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23137163

ABSTRACT

In this work we have investigated the selectivity of lactose permease (LacY) of Escherichia coli (E. coli) for its surrounding phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET) measurements have been performed to investigate the selectivity between a single tryptophan mutant of LacY used as donor (D), and two analogues of POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as acceptors. As a difference from previous works, now the donor has been single-W151/C154G/D68C LacY. It has been reported that the replacement of the aspartic acid in position 68 by cysteine inhibits active transport in LacY. The objectives of this work were to elucidate the phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C, induced changes in the protein-lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of the probability of each site in the annular ring being occupied by a label (µ) were similar at the studied temperatures (24 °C and 37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Monosaccharide Transport Proteins/metabolism , Phosphatidylethanolamines/metabolism , Symporters/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fluorescence Resonance Energy Transfer , Models, Molecular , Monosaccharide Transport Proteins/genetics , Phosphatidylglycerols/metabolism , Point Mutation , Symporters/genetics
7.
J Phys Chem B ; 116(8): 2438-45, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22296326

ABSTRACT

Förster resonance energy transfer (FRET) is a powerful method for the characterization of membrane proteins lipid selectivity. FRET can be used to quantify distances between a single donor and a single acceptor molecule; however, for FRET donors and acceptors scattered in the bilayer plane, multiple donor-acceptor pairs and distances are present. In addition, when studying protein/lipid selectivity, for a single tryptophan used as a donor; several lipid acceptors may be located at the boundary region (annular lipids) of the protein. Therefore, in these experiments, a theoretical analysis based on binomial distribution of multiple acceptors around the membrane proteins is required. In this work, we performed FRET measurements between single tryptophan lactose permease (W151/C154G LacY) of Escherichia coli and pyrene-labeled phospholipids (Pyr-PE, Pyr-PG, and Pyr-PC) reconstituted in palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline, and 1,2-dioleoyl-sn-glycero-3-phospho-choline at 25 and 37 °C. To increase the sensitivity of the method and to ascertain the lipid selectivity for LacY, we reconstituted the protein in the pure phospholipids doped with 1.5% of labeled phospholipids. From fitting the theoretical model to the experimental FRET efficiencies, two parameters were calculated: the probability of a site in the annular ring being occupied by a labeled pyrene phospholipid and the relative association constant between the labeled and unlabeled phospholipids. The experimental FRET efficiencies have been interpreted taking into account the particular folding of the protein in each phospholipid matrix. Additional information on the annular lipid composition for each system has been obtained by exciting W151/C154G LacY and monitoring the emission intensities for monomer and excimer of the pyrene spectra. The results obtained indicate a higher selectivity of LacY for PE over PG and PC and pointed to a definite role of the acyl chains in the overall phospholipid-protein interaction.


Subject(s)
Escherichia coli Proteins/chemistry , Fluorescence Resonance Energy Transfer , Membrane Proteins/chemistry , Membrane Transport Proteins/chemistry , Phospholipids/chemistry , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Membrane Transport Proteins/isolation & purification , Membrane Transport Proteins/metabolism , Models, Molecular
8.
Langmuir ; 28(1): 701-6, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22087507

ABSTRACT

We report a thermodynamic study of the effect of calcium on the mixing properties at the air-water interface of two phospholipids that mimic the inner membrane of Escherichia coli: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. In this study, pure POPE and POPG monolayers and three mixed monolayers, χ(POPE) = 0.25, 0.5, and 0.75, were analyzed. We show that for χ(POPE) = 0.75, the values of the Gibbs energy of mixing were negative, which implies attractive interactions. We used atomic force microscopy to study the structural properties of Langmuir-Blodgett monolayers that were transferred onto mica substrate at lateral surface pressures of 25 and 30 mN m(-1). The topographic images of pure POPE and POPG monolayers exhibited two domains of differing size and morphology, showing a step height difference within the range expected for liquid-condensed and liquid-expanded phases. The images captured for χ(POPE) = 0.25 were featureless, and for χ(POPE) = 0.5 small microdomains were observed. The composition that mimics quantitatively the proportions found in the inner membrane of E. coli , χ(POPE) = 0.75, showed large liquid condensed domains in the liquid expanded phase. The extension of each domain was quantitatively analyzed. Because calcium is used in the formation of supported bilayers of negatively charged phospholipids, the possible influence of the nanostructure of the apical on the distal monolayer is discussed.


Subject(s)
Escherichia coli/chemistry , Membrane Lipids/chemistry , Nanostructures , Phospholipids/chemistry , Solubility
9.
J Phys Chem B ; 115(44): 12778-84, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21962215

ABSTRACT

Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are the two main components of the inner membrane of Escherichia coli. It is well-known that inner membrane contains phospholipids with a nearly constant polar headgroup composition. However, bacteria can regulate the degree of unsaturation of the acyl chains in order to adapt to different external stimuli. Studies on model membranes of mixtures of PE and PG, mimicking the proportions found in E. coli, can provide essential information on the phospholipid organization in biological membranes and may help in the understanding of membrane proteins activity, such as lactose permease (LacY) of E. coli. In this work we have studied how different phosphatidylethanolamines differing in acyl chain saturation influence the formation of laterally segregated domains. Three different phospholipid systems were studied: DOPE:POPG, POPE:POPG, and DPPE:POPG at molar ratios of 3:1. Lipid mixtures were analyzed at 24 and 37 °C through three different model membranes: monolayers, liposomes, and supported lipid bilayers (SLBs). Data from three different techniques, Langmuir isotherms, Laurdan generalized polarization, and atomic force microscopy (AFM), evidenced that only the DPPE:POPG system exhibited coexistence between gel (L(ß)) and fluid (L(α)) phases at both 24 and 37 °C . In the POPE:POPG system the L(ß)/L(α) coexistence appears at 27 °C. Therefore, in order to investigate the distribution of LacY among phospholipid phases, we have used AFM to explore the distribution of LacY in SLBs of the three phospholipid systems at 27 °C, where the DOPE:POPG is in L(α) phase and POPE:POPG and DPPE:POPG exhibit L(ß)/L(α) coexistence. The results demonstrate the preferential insertion of LacY in fluid phase.


Subject(s)
Lipid Bilayers/chemistry , Liposomes/chemistry , Phosphatidylethanolamines/chemistry , Biomimetic Materials/chemistry , Escherichia coli/chemistry , Escherichia coli/enzymology , Liposomes/ultrastructure , Membrane Transport Proteins/chemistry , Microscopy, Atomic Force , Phase Transition
10.
Biochim Biophys Acta ; 1798(9): 1707-13, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20488161

ABSTRACT

The phospholipid composition that surrounds a membrane protein is critical to maintain its structural integrity and, consequently, its functional properties. To understand better this in the present work we have performed FRET measurements between the single tryptophan residue of a lactose permease Escherichia coli mutant (single-W151/C154G LacY) and pyrene-labeled phospholipids (Pyr-PE and Pyr-PG) at 37 degrees C. We have reconstituted this LacY mutant in proteoliposomes formed with heteroacid phospholipids, POPE and POPG, and homoacid phospholipids DOPE and DPPE, resembling the same PE/PG proportion found in the E. coli inner membrane (3:1, mol/mol). A theoretical model has been fitted to the experimental data. In the POPE/POPG system, quantitative model calculations show accordance with the experimental values that requires an annular region composed of approximately approximately 90 mol% PE. The experimental FRET efficiencies for the gel/fluid phase-separated DOPE/POPG system indicate a higher presence of PG in the annular region, from which it can be concluded that LacY shows clear preference for the fluid phase. Similar conclusions are obtained from analysis of excimer-to-monomer (E/M) pyrene ratios. To test the effects of this on cardiolipin (CL) on the annular region, myristoyl-CL and oleoyl-CL were incorporated in the biomimetic POPE/POPG matrix. The experimental FRET efficiency values, slightly larger for Pyr-PE than for Pyr-PG, suggest that CL displaces POPE and, more extensively, POPG from the annular region of LacY. Model fitting indicates that CL enrichment in the annular layer is, in fact, solely produced by replacing PG and that myristoyl-CL is not able to displace PE in the same way that oleoyl-CL does. One of the conclusions of this work is the fact that LacY inserts preferentially in fluid phases of membranes.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Cardiolipins/chemistry
11.
J Phys Chem B ; 114(10): 3543-9, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20175552

ABSTRACT

Phosphatidylethanolamine (PE) and phosphatidylgycerol (PG) are the main components of the inner membrane of Escherichia coli. Mixtures of PE and PG mimicking the proportions found in E. coli have been extensively used to reconstitute transmembrane proteins as lactose permease (LacY) in proteoliposomes because in this environment the protein shows maximal activity. Hence, the study of the physicochemical properties of this phospholipid matrix becomes of potential interest. In previous studies, we used atomic force microscopy (AFM) and force spectroscopy (FS) to study the topographic and nanomechanical properties of supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and of POPE and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol). The study reported here was extended for completeness to asymmetric SLBs obtained by the Langmuir-Blodgett (LB) method. Thus, we prepared SLBs with the proximal leaflet extracted at 30 mN x m(-1) and the distal leaflet extracted at 25 mN x m(-1). We prepared SLBs with both leaflets with same composition (POPG/POPG), and also with the proximal leaflet of POPE and the distal leaflet of POPG or POPE:POPG (3:1, mol/mol). The topography of the SLBs acquired in liquid was compared with the topography of the monolayers acquired in air. Breakthrough (F(y)) and adhesion forces (F(adh)) of SLBs were extracted from force curves. The values obtained are discussed in terms of the possible involvement of the nanomechanical properties of the SLBs in membrane protein insertion. The results provide means for the observation that insertion of LacY in POPE:POPG (3:1, mol/mol) occurs preferentially in the fluid phase, which is the phase with the lower F(y) and the higher F(adh).


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Microscopy, Atomic Force
12.
Biochim Biophys Acta ; 1798(5): 1014-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20096263

ABSTRACT

We report the insertion of a transmembrane protein, lactose permease (LacY) from Escherichia coli (E. coli), in supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), in biomimetic molar proportions. We provide evidence of the preferential insertion of LacY in the fluid domains. Analysis of the self-assembled protein arrangements showed that LacY: (i) is inserted as a monomer within fluid domains of SLBs of POPE:POPG (3:1, mol/mol), (ii) has a diameter of approx. 7.8nm; and (iii) keeps an area of phospholipids surrounding the protein that is compatible with shells of phospholipids.


Subject(s)
Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Phospholipids/chemistry , Escherichia coli/enzymology , Microscopy, Atomic Force , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry
13.
Biochim Biophys Acta ; 1798(2): 291-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19595667

ABSTRACT

Biochemical and structural work has revealed the importance of phospholipids in biogenesis, folding and functional modulation of membrane proteins. Therefore, the nature of protein-phospholipid interaction is critical to understand such processes. Here, we have studied the interaction of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) mixtures with the lactose permease (LacY), the sugar/H(+) symporter from Escherichia coli and a well characterized membrane transport protein. FRET measurements between single-W151/C154G LacY reconstituted in a lipid mixture composed of POPE and POPG at different molar ratios and pyrene-labeled PE or PG revealed a different phospholipid distribution between the annular region of LacY and the bulk lipid phase. Results also showed that both PE and PG can be part of the annular region, being PE the predominant when the PE:PG molar ratio mimics the membrane of E. coli. Furthermore, changes in the thermotropic behavior of phospholipids located in this annular region confirm that the interaction between LacY and PE is stronger than that of LacY and PG. Since PE is a proton donor, the results obtained here are discussed in the context of the transport mechanism of LacY.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Monosaccharide Transport Proteins/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Symporters/chemistry , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer/methods , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/metabolism , Protein Structure, Tertiary/physiology
14.
J Phys Chem B ; 113(14): 4648-55, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19338364

ABSTRACT

We study the effect of Ca(2+) on the lateral segregation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol). Supported lipid bilayers (SLBs) were observed by atomic force microscopy (AFM). Since SLBs are formed from liposomes of POPE:POPG, we examined the effect of calcium on these suspensions by differential scanning calorimetry (DSC) and (31)P nuclear magnetic resonance spectroscopy ((31)P NMR). AFM images revealed the existence of two separated phases, the higher showing a region with protruding subdomains. Force spectroscopy (FS) was applied to clarify the nature of each phase. The values of breakthrough force (F(y)), adhesion force (F(adh)), and height extracted from the force curves were assigned to the corresponding gel (L(beta)) and fluid (L(alpha)) phase. The endotherms obtained by DSC suggest that, in the presence of Ca(2+), phase separation already exists in the suspensions of POPE:POPG used to form SLBs. Due to the temperature changes applied during preparation of SLBs a (31)P NMR study was performed to assess the lamellar nature of the samples before spreading them onto mica. With in situ AFM experiments we showed that the binding of Ca(2+) to POPG-enriched domains only induces the formation of subdomains in the L(beta) phase.


Subject(s)
Calcium/chemistry , Lipid Bilayers/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Particle Size , Phosphorus Isotopes
15.
J Phys Chem B ; 112(33): 10181-7, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18651767

ABSTRACT

We studied the thermal response of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) by comparing the differential scanning calorimetry (DSC) data of liposomes with atomic force microscopy (AFM) observations on supported planar bilayers. Planar bilayers were obtained by using the Langmuir-Blodgett (LB) technique: the first leaflet transferred at 30 mN m(-1) and the second at 25 mN m(-1). The topographic evaluation of supported POPE bilayers above room temperature showed changes between 43.8 and 59.8 degrees C. These observations are discussed in relation to the main roughness (Ra) variations and are interpreted as the result of the lamellar liquid crystalline (Lalpha) to inverted hexagonal (HII) phase transition. High-magnification images obtained at 45 degrees C revealed intermediate structures in the transformation. Force spectroscopy (FS) was subsequently applied to gain further structural and nanomechanical insight into the POPE planar bilayers as a function of temperature. These measurements show that the threshold force (Fy), which is the maximum force, that the sample can withstand before breaking, increases from 1.91+/-0.11 nN at 21 degrees C up to 3.08+/-0.17 nN at 43.8 degrees C. This behavior is interpreted as a consequence of the formation of intermediate structures or stalks in the transition from the L alpha to H II phase.


Subject(s)
Lipid Bilayers , Phosphatidylethanolamines/chemistry , Calorimetry, Differential Scanning , Chemistry, Physical/methods , Crystallization , Hot Temperature , Ions , Microscopy, Atomic Force/methods , Phase Transition , Pressure , Spectrophotometry/methods , Temperature
16.
J Mol Recognit ; 20(6): 546-53, 2007.
Article in English | MEDLINE | ID: mdl-17907278

ABSTRACT

In this study we examined the properties of supported planar bilayers (SPBs) formed from phospholipid components that comprise the mitochondrial inner membrane. We used 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and cardiolipin (CL). Liposomes of binary POPE:POPC (1:1, mol:mol) and ternary (POPE:POPC:CL (0.5:0.3:0.2, mol:mol:mol) composition were used in the formation of SPBs on mica. The characterization of the SPBs was carried out below (4 degrees C) and above (24 and 37 degrees C) the phase transition temperature (Tm) of the mixtures in solution. We observed: (i) that the thickness of the bilayers, calculated from a cross-sectional analysis, decreased as the visualization temperature increased; (ii) the existence of laterally segregated domains that respond to temperature in SPBs of POPE:POPC:CL; (iii) a decrease in height and an increase in roughness (Ra) of SPBs after cytochrome c (cyt c) injection at room temperature. To obtain further insight into the nature of the interaction between cyt c and the bilayers, the competition between 8-anilino-1-naphthalene sulfonate (ANS) and the protein for the same binding sites in liposomes was monitored by fluorescence. The results confirm the existence of preferential interaction of cyt c with CL containing liposomes. Taking these results and those of previous papers published by the group, we discuss the preferential adsorption of cyt c in CL domains. This provides support for the relevance of these phospholipids as a proton trap in the oxidative phosphorylation process that occurs in the energy transducing membranes.


Subject(s)
Lipid Bilayers/chemistry , Microscopy, Atomic Force , Mitochondrial Membranes/ultrastructure , Biomimetics , Cardiolipins/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Surface Properties
17.
J Phys Chem B ; 111(37): 10946-51, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17718465

ABSTRACT

The lateral packing properties of phospholipids that surround transmembrane proteins are fundamental in the biological activity of these proteins. In this work, Langmuir monolayers of one such lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), are studied with a combination of pressure-area isotherm analysis, Brewster angle microscopy, and atomic force microscopy of extracted films. The analysis reveals a sequence of phase transitions LE-LC-LC' occurring in a narrow packing range. The lateral pressures and area densities of these phases provided meanings for the packing requirements in the annular lipid region of typical transmembrane proteins.


Subject(s)
Membrane Proteins/chemistry , Phase Transition , Phosphatidylethanolamines/chemistry , Phospholipids/chemistry , Escherichia coli Proteins/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Models, Chemical , Monosaccharide Transport Proteins/chemistry , Symporters/chemistry
18.
Biophys J ; 93(8): 2713-25, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17586574

ABSTRACT

The topographic evolution of supported dipalmitoylphosphatidylcholine (DPPC) monolayers with temperature has been followed by atomic force microscopy in liquid environment, revealing the presence of only one phase transition event at approximately 46 degrees C. This finding is a direct experimental proof that the two phase transitions observed in the corresponding bilayers correspond to the individual phase transition of the two leaflets composing the bilayer. The transition temperature and its dependency on the measuring medium (liquid saline solution or air) is discussed in terms of changes in van der Waals, hydration, and hydrophobic/hydrophilic interactions, and it is directly compared with the transition temperatures observed in the related bilayers under the same experimental conditions. Force spectroscopy allows us to probe the nanomechanical properties of such monolayers as a function of temperature. These measurements show that the force needed to puncture the monolayers is highly dependent on the temperature and on the phospholipid phase, ranging from 120+/-4 pN at room temperature (liquid condensed phase) to 49+/-2 pN at 65 degrees C (liquid expanded phase), which represents a two orders-of-magnitude decrease respective to the forces needed to puncture DPPC bilayers. The topographic study of the monolayers in air around the transition temperature revealed the presence of boundary domains in the monolayer surface forming 120 degrees angles between them, thus suggesting that the cooling process from the liquid-expanded to the liquid-condensed phase follows a nucleation and growth mechanism.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Microscopy, Atomic Force/methods , Models, Chemical , Models, Molecular , Computer Simulation , Elasticity , Molecular Conformation , Stress, Mechanical , Temperature
19.
Ultramicroscopy ; 107(10-11): 943-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17570594

ABSTRACT

In the study described here, supported planar bilayers (SPBs) of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE):cardiolipin (CL) (0.8:0.2, mol/mol) were examined using atomic force microscopy (AFM). SPBs were formed from suspensions of POPE:CL (0.8:0.2, mol/mol) in inverted hexagonal (H(II)) phases (buffer containing Ca(2+)). Three laterally segregated domains which differ in height were observed at 24 degrees C. Based on the area accounted for each domain and the nominal composition of the mixture, we interpret that the higher domain is formed by CL, while the intermediate and lower domains (LDs) are formed by POPE. The three domains respond to temperature increase with relative changes in their area. At 37 degrees C, we observed that the increase in the area of the intermediate domain occurs at the expense of the LD. (31)P-nuclear magnetic resonance ((31)P-NMR) and Differential scanning calorimetry (DSC) were used in combination with AFM to characterize the phase behavior of the suspensions and to elucidate the nature of the structures observed.


Subject(s)
Cardiolipins/chemistry , Lipid Bilayers/chemistry , Phosphatidylethanolamines/chemistry , Calcium/pharmacology , Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Suspensions
20.
Langmuir ; 23(10): 5651-6, 2007 May 08.
Article in English | MEDLINE | ID: mdl-17419653

ABSTRACT

In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).


Subject(s)
Cardiolipins/chemistry , Cytochromes c/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Adsorption , Liposomes/chemistry , Microscopy, Atomic Force , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...