Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5-1): 054207, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115534

ABSTRACT

Functional networks are powerful tools to study statistical interdependency structures in spatially extended or multivariable systems. They have been used to get insights into the dynamics of complex systems in various areas of science. In particular, percolation properties of correlation networks have been employed to identify early warning signals of critical transitions. In this work, we further investigate the corresponding potential of percolation measures for the anticipation of different types of sudden shifts in the state of coupled irregularly oscillating systems. As a paradigmatic model system, we study the dynamics of a ring of diffusively coupled noisy FitzHugh-Nagumo oscillators and show that, when the oscillators are nearly completely synchronized, the percolation-based precursors successfully provide very early warnings of the rapid switches between the two states of the system. We clarify the mechanisms behind the percolation transition by separating global trends given by the mean-field behavior from the synchronization of individual stochastic fluctuations. We then apply the same methodology to real-world data of sea surface temperature anomalies during different phases of the El Niño-Southern Oscillation. This leads to a better understanding of the factors that make percolation precursors effective as early warning indicators of incipient El Niño and La Niña events.

2.
Sci Rep ; 13(1): 20278, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985847

ABSTRACT

Ecosystems threatened by climate change can boost their resilience by developing spatial patterns. Spatially regular patterns in wave-exposed seagrass meadows are attributed to self-organization, yet underlying mechanisms are not well understood. Here, we show that these patterns could emerge from feedbacks between wave reflection and seagrass-induced bedform growth. We derive a theoretical model for surface waves propagating over a growing seagrass bed. Wave-induced bed shear stress shapes bedforms which, in turn, trigger wave reflection. Numerical simulations show seagrass pattern development once wave forcing exceeds a critical amplitude. In line with Mediterranean Sea field observations, these patterns have half the wavelength of the forcing waves. Our results raise the hypothesis that pattern formation optimizes the potential of seagrass meadows to reflect wave energy, and a clear direction for future field campaigns. If wave-reflecting pattern formation increases ecosystem resilience under globally intensifying wave climates, these ecosystems may inspire nature-based coastal protection measures.

3.
Phys Rev Lett ; 130(5): 058401, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36800461

ABSTRACT

We identify a mechanism for biological spatial pattern formation arising when the signals that mediate interactions between individuals in a population have pulsed character. Our general population-signal framework shows that while for a slow signal-dynamics limit no pattern formation is observed for any values of the model parameters, for a fast limit, on the contrary, pattern formation can occur. Furthermore, at these limits, our framework reduces, respectively, to reaction-diffusion and spatially nonlocal models, thus bridging these approaches.


Subject(s)
Models, Biological , Humans , Diffusion
4.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623188

ABSTRACT

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Subject(s)
Ecosystem , Models, Theoretical , Wetlands , Carbon Sequestration , Sulfides
5.
Phys Rev E ; 106(6-1): 064307, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671121

ABSTRACT

How large ecosystems can create and maintain the remarkable biodiversity we see in nature is probably one of the biggest open questions in science, attracting attention from different fields, from theoretical ecology to mathematics and physics. In this context, modeling the stable coexistence of species competing for limited resources is a particularly challenging task. From a mathematical point of view, coexistence in competitive dynamics can be achieved when dominance among species forms intransitive loops. However, these relationships usually lead to species' relative abundances neutrally cycling without converging to a stable equilibrium. Although in recent years several mechanisms have been proposed, models able to explain species coexistence in competitive communities are still limited. Here we identify locality in the interactions as one of the simplest mechanisms leading to stable species coexistence. We consider a simplified ecosystem where individuals of each species lay on a spatial network and interactions are possible only between nodes within a certain distance. Varying such distance allows to interpolate between local and global competition. Our results demonstrate, within the scope of our model, that species coexist reaching a stable equilibrium when two conditions are met: individuals are embedded in space and can only interact with other individuals within a short distance. On the contrary, when one of these ingredients is missing, large oscillations and neutral cycles emerge.


Subject(s)
Ecosystem , Models, Biological , Humans , Ecology , Biota , Biodiversity , Population Dynamics
6.
Chaos ; 31(9): 093128, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598473

ABSTRACT

In the past few decades, boreal summers have been characterized by an increasing number of extreme weather events in the Northern Hemisphere extratropics, including persistent heat waves, droughts and heavy rainfall events with significant social, economic, and environmental impacts. Many of these events have been associated with the presence of anomalous large-scale atmospheric circulation patterns, in particular, persistent blocking situations, i.e., nearly stationary spatial patterns of air pressure. To contribute to a better understanding of the emergence and dynamical properties of such situations, we construct complex networks representing the atmospheric circulation based on Lagrangian trajectory data of passive tracers advected within the atmospheric flow. For these Lagrangian flow networks, we study the spatial patterns of selected node properties prior to, during, and after different atmospheric blocking events in Northern Hemisphere summer. We highlight the specific network characteristics associated with the sequence of strong blocking episodes over Europe during summer 2010 as an illustrative example. Our results demonstrate the ability of the node degree, entropy, and harmonic closeness centrality based on outgoing links to trace important spatiotemporal characteristics of atmospheric blocking events. In particular, all three measures capture the effective separation of the stationary pressure cell forming the blocking high from the normal westerly flow and the deviation of the main atmospheric currents around it. Our results suggest the utility of further exploiting the Lagrangian flow network approach to atmospheric circulation in future targeted diagnostic and prognostic studies.

7.
Nat Commun ; 12(1): 4935, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400636

ABSTRACT

The study of connectivity patterns in networks has brought novel insights across diverse fields ranging from neurosciences to epidemic spreading or climate. In this context, betweenness centrality has demonstrated to be a very effective measure to identify nodes that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to define betweenness outside the network framework. By analytically linking dynamical systems and network theory, we provide a trajectory-based formulation of betweenness, called Lagrangian betweenness, as a function of Lyapunov exponents. This extends the concept of betweenness beyond the context of network theory relating hyperbolic points and heteroclinic connections in any dynamical system to the structural bottlenecks of the network associated with it. Using modeled and observational velocity fields, we show that such bottlenecks are present and surprisingly persistent in the oceanic circulation across different spatio-temporal scales and we illustrate the role of these areas in driving fluid transport over vast oceanic regions. Analyzing plankton abundance data from the Kuroshio region of the Pacific Ocean, we find significant spatial correlations between measures of diversity and betweenness, suggesting promise for ecological applications.

8.
Sci Rep ; 11(1): 3470, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568726

ABSTRACT

We study the effect that disturbances in the ecological landscape exert on the spatial distribution of a population that evolves according to the nonlocal FKPP equation. Using both numerical and analytical techniques, we characterize, as a function of the interaction kernel, the three types of stationary profiles that can develop near abrupt spatial variations in the environmental conditions vital for population growth: sustained oscillations, decaying oscillations and exponential relaxation towards a flat profile. Through the mapping between the features of the induced wrinkles and the shape of the interaction kernel, we discuss how heterogeneities can reveal information that would be hidden in a flat landscape.

9.
Phys Rev E ; 104(6-2): 065111, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030886

ABSTRACT

We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.

10.
Sci Rep ; 9(1): 18161, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796799

ABSTRACT

Eco-evolutionary frameworks can explain certain features of communities in which ecological and evolutionary processes occur over comparable timescales. Here, we investigate whether an evolutionary dynamics may interact with the spatial structure of a prey-predator community in which both species show limited mobility and predator perceptual ranges are subject to natural selection. In these conditions, our results unveil an eco-evolutionary feedback between species spatial mixing and predators perceptual range: different levels of mixing select for different perceptual ranges, which in turn reshape the spatial distribution of prey and its interaction with predators. This emergent pattern of interspecific interactions feeds back to the efficiency of the various perceptual ranges, thus selecting for new ones. Finally, since prey-predator mixing is the key factor that regulates the intensity of predation, we explore the community-level implications of such feedback and show that it controls both coexistence times and species extinction probabilities.


Subject(s)
Predatory Behavior/physiology , Animals , Biological Evolution , Extinction, Biological , Feedback , Population Dynamics , Selection, Genetic/physiology
11.
Sci Rep ; 9(1): 16687, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31723160

ABSTRACT

We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.

12.
Ecol Appl ; 29(5): e01913, 2019 07.
Article in English | MEDLINE | ID: mdl-31144784

ABSTRACT

Marine resources stewardships are progressively becoming more receptive to an effective incorporation of both ecosystem and environmental complexities into the analytical frameworks of fisheries assessment. Understanding and predicting marine fish production for spatially and demographically complex populations in changing environmental conditions is however still a difficult task. Indeed, fisheries assessment is mostly based on deterministic models that lack realistic parameterizations of the intricate biological and physical processes shaping recruitment, a cornerstone in population dynamics. We use here a large metapopulation of a harvested fish, the European hake (Merluccius merluccius), managed across transnational boundaries in the northwestern Mediterranean, to model fish recruitment dynamics in terms of physics-dependent drivers related to dispersal and survival. The connectivity among nearby subpopulations is evaluated by simulating multi-annual Lagrangian indices of larval retention, imports, and self-recruitment. Along with a proxy of the regional hydroclimate influencing early life stages survival, we then statistically determine the relative contribution of dispersal and hydroclimate for recruitment across contiguous management units. We show that inter-annual variability of recruitment is well reproduced by hydroclimatic influences and synthetic connectivity estimates. Self-recruitment (i.e., the ratio of retained locally produced larvae to the total number of incoming larvae) is the most powerful metric as it integrates the roles of retained local recruits and immigrants from surrounding subpopulations and is able to capture circulation patterns affecting recruitment at the scale of management units. We also reveal that the climatic impact on recruitment is spatially structured at regional scale due to contrasting biophysical processes not related to dispersal. Self-recruitment calculated for each management unit explains between 19% and 32.9% of the variance of recruitment variability, that is much larger than the one explained by spawning stock biomass alone, supporting an increase of consideration of connectivity processes into stocks assessment. By acknowledging the structural and ecological complexity of marine populations, this study provides the scientific basis to link spatial management and temporal assessment within large marine metapopulations. Our results suggest that fisheries management could be improved by combining information of physical oceanography (from observing systems and operational models), opening new opportunities such as the development of short-term projections and dynamic spatial management.


Subject(s)
Ecosystem , Fishes , Animals , Fisheries , Larva , Oceans and Seas , Population Dynamics
13.
Chaos ; 29(1): 013115, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709136

ABSTRACT

In an incompressible flow, fluid density remains invariant along fluid element trajectories. This implies that the spatial distribution of non-interacting noninertial particles in such flows cannot develop density inhomogeneities beyond those that are already introduced in the initial condition. However, in certain practical situations, density is measured or accumulated on (hyper-) surfaces of dimensionality lower than the full dimensionality of the flow in which the particles move. An example is the observation of particle distributions sedimented on the floor of the ocean. In such cases, even if the initial distribution of noninertial particles is uniform but its support is finite, advection in an incompressible flow will give rise to inhomogeneities in the observed density. In this paper, we analytically derive, in the framework of an initially homogeneous particle sheet sedimenting toward a bottom surface, the relationship between the geometry of the flow and the emerging distribution. From a physical point of view, we identify the two processes that generate inhomogeneities to be the stretching within the sheet and the projection of the deformed sheet onto the target surface. We point out that an extreme form of inhomogeneity, caustics, can develop for sheets. We exemplify our geometrical results with simulations of particle advection in a simple kinematic flow, study the dependence on various parameters involved, and illustrate that the basic mechanisms work similarly if the initial (homogeneous) distribution occupies a more general region of finite extension rather than a sheet.

14.
Sci Adv ; 3(8): e1603262, 2017 08.
Article in English | MEDLINE | ID: mdl-28782035

ABSTRACT

Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and "leopard skin" patterns consisting of bare seascapes dotted with plant patches. The model predicts that these intermediate seascapes extending across kilometers emerge as a consequence of local demographic imbalances along with facilitative and competitive interactions among the plants with a characteristic spatial scale of 20 to 30 m, consistent with known drivers of seagrass performance. The model, which can be extended to clonal growth plants in other landscapes showing fairy rings, reveals that the different seascapes observed hold diagnostic power as to the proximity of seagrass meadows to extinction points that can be used to identify ecosystems at risks.

15.
Chaos ; 27(3): 035601, 2017 03.
Article in English | MEDLINE | ID: mdl-28364738

ABSTRACT

During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.

16.
Chaos ; 27(3): 035803, 2017 03.
Article in English | MEDLINE | ID: mdl-28364759

ABSTRACT

We show that the clustering coefficient, a standard measure in network theory, when applied to flow networks, i.e., graph representations of fluid flows in which links between nodes represent fluid transport between spatial regions, identifies approximate locations of periodic trajectories in the flow system. This is true for steady flows and for periodic ones in which the time interval τ used to construct the network is the period of the flow or a multiple of it. In other situations, the clustering coefficient still identifies cyclic motion between regions of the fluid. Besides the fluid context, these ideas apply equally well to general dynamical systems. By varying the value of τ used to construct the network, a kind of spectroscopy can be performed so that the observation of high values of mean clustering at a value of τ reveals the presence of periodic orbits of period 3τ, which impact phase space significantly. These results are illustrated with examples of increasing complexity, namely, a steady and a periodically perturbed model two-dimensional fluid flow, the three-dimensional Lorenz system, and the turbulent surface flow obtained from a numerical model of circulation in the Mediterranean sea.

17.
Phys Rev E ; 94(4-1): 042120, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841471

ABSTRACT

Brownian particles interacting via repulsive soft-core potentials can spontaneously aggregate, despite repelling each other, and form periodic crystals of particle clusters. We study this phenomenon in low-dimensional situations (one and two dimensions) at two levels of description: by performing numerical simulations of the discrete particle dynamics and by linear and nonlinear analysis of the corresponding Dean-Kawasaki equation for the macroscopic particle density. Restricting to low dimensions and neglecting fluctuation effects, we gain analytical insight into the mechanisms of the instability leading to clustering which turn out to be the interplay among diffusion, the intracluster forces, and the forces between neighboring clusters. We show that the deterministic part of the Dean-Kawasaki equation provides a good description of the particle dynamics, including width and shape of the clusters and over a wide range of parameters, and analyze with weakly nonlinear techniques the nature of the pattern-forming bifurcation in one and two dimensions. Finally, we briefly discuss the case of attractive forces.

19.
Sci Rep ; 6: 29552, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27412567

ABSTRACT

Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system's time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system's tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon.

20.
PLoS One ; 11(4): e0153703, 2016.
Article in English | MEDLINE | ID: mdl-27128846

ABSTRACT

Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.


Subject(s)
Climate , Algorithms , Diffusion , Geological Phenomena , Models, Theoretical , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...