Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Divers ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153018

ABSTRACT

Diet habits and nutrition quality significantly impact health and disease. Here is delve into the intricate relationship between diet habits, nutrition quality, and their direct impact on health and homeostasis. Focusing on (-)-Epicatechin, a natural flavanol found in various foods like green tea and cocoa, known for its positive effects on cardiovascular health and diabetes prevention. The investigation encompasses the absorption, metabolism, and distribution of (-)-Epicatechin in the human body, revealing a diverse array of metabolites in the circulatory system. Notably, (-)-Epicatechin demonstrates an ability to activate nitric oxide synthase (eNOS) through the G protein-coupled estrogen receptor (GPER). While the precise role of GPER and its interaction with classical estrogen receptors (ERs) remains under scrutiny, the study employs computational methods, including density functional theory, molecular docking, and molecular dynamics simulations, to assess the physicochemical properties and binding affinities of key (-)-Epicatechin metabolites with GPER. DFT analysis revealed distinct physicochemical properties among metabolites, influencing their reactivity and stability. Rigid and flexible molecular docking demonstrated varying binding affinities, with some metabolites surpassing (-)-Epicatechin. Molecular dynamics simulations highlighted potential binding pose variations, while MMGBSA analysis provided insights into the energetics of GPER-metabolite interactions. The outcomes elucidate distinct interactions, providing insights into potential molecular mechanisms underlying the effects of (-)-Epicatechin across varied biological contexts.

2.
J Mol Histol ; 54(4): 405-413, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37358754

ABSTRACT

Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of ß-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Mice , Animals , Sarcoglycans/genetics , Sarcoglycans/metabolism , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscle, Skeletal/physiology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Mice, Knockout
3.
Gene ; 849: 146907, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36174904

ABSTRACT

The flavanol (-)-epicatechin has exercise-mimetic properties. Besides, several miRNAs play a role in modulating the adaptation of the muscle to different training protocols. However, notwithstanding all information, few studies aimed to determine if (-)-epicatechin can modify the expression of miRNAs related to skeletal muscle development and regeneration. Mice were treated for fifteen days by oral gavage with the flavanol (-)-epicatechin. After treatment, the quadriceps of the mice was dissected, and total RNA was extracted. The expression level of miR-133, -204, -206, -223, -486, and -491 was analyzed by qRT-PCR. We also used bioinformatic analysis to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. Additionally, we analyzed the level of the myogenic proteins MyoD and myogenin by Western blot and measured the cross-sectional area of muscle fibers stained with E&H. (-)-Epicatechin upregulated the expression of miR-133, -204, -206, -223, and -491 significantly, which was associated with an increase in the level of the myogenic proteins MyoD and Myogenin and an augment in the fiber size. The bioinformatics analysis showed that the studied miRNAs might participate in different signal transduction pathways related to muscle development and adaptation. Our results showed that (-)-epicatechin upregulated miRNAs that participate in skeletal exercise muscle adaptation, induced muscle hypertrophy, and increased the level of myogenic proteins MyoD and MyoG.


Subject(s)
Catechin , MicroRNAs , Mice , Animals , Myogenin/genetics , Myogenin/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Catechin/pharmacology , Muscle, Skeletal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation
4.
Life (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36675972

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by cerebellar ataxia and retinopathy. SCA7 is caused by a CAG expansion in the ATXN7 gene, which results in an extended polyglutamine (polyQ) tract in the encoded protein, the ataxin-7. PolyQ expanded ataxin-7 elicits neurodegeneration in cerebellar Purkinje cells, however, its impact on the SCA7-associated retinopathy remains to be addressed. Since Müller glial cells play an essential role in retinal homeostasis, we generate an inducible model for SCA7, based on the glial Müller MIO-M1 cell line. The SCA7 pathogenesis has been explained by a protein gain-of-function mechanism, however, the contribution of the mutant RNA to the disease cannot be excluded. In this direction, we found nuclear and cytoplasmic foci containing mutant RNA accompanied by subtle alternative splicing defects in MIO-M1 cells. RNA foci were also observed in cells from different lineages, including peripheral mononuclear leukocytes derived from SCA7 patient, suggesting that this molecular mark could be used as a blood biomarker for SCA7. Collectively, our data showed that our glial cell model exhibits the molecular features of SCA7, which makes it a suitable model to study the RNA toxicity mechanisms, as well as to explore therapeutic strategies aiming to alleviate glial dysfunction.

5.
Biomolecules ; 11(2)2021 01 26.
Article in English | MEDLINE | ID: mdl-33530452

ABSTRACT

Myotonic dystrophy type 1 (DM1), the most frequent inherited muscular dystrophy in adults, is caused by the CTG repeat expansion in the 3'UTR of the DMPK gene. Mutant DMPK RNA accumulates in nuclear foci altering diverse cellular functions including alternative splicing regulation. DM1 is a multisystemic condition, with debilitating central nervous system alterations. Although a defective neuroglia communication has been described as a contributor of the brain pathology in DM1, the specific cellular and molecular events potentially affected in glia cells have not been totally recognized. Thus, to study the effects of DM1 mutation on glial physiology, in this work, we have established an inducible DM1 model derived from the MIO-M1 cell line expressing 648 CUG repeats. This new model recreated the molecular hallmarks of DM1 elicited by a toxic RNA gain-of-function mechanism: accumulation of RNA foci colocalized with MBNL proteins and dysregulation of alternative splicing. By applying a microarray whole-transcriptome approach, we identified several gene changes associated with DM1 mutation in MIO-M1 cells, including the immune mediators CXCL10, CCL5, CXCL8, TNFAIP3, and TNFRSF9, as well as the microRNAs miR-222, miR-448, among others, as potential regulators. A gene ontology enrichment analyses revealed that inflammation and immune response emerged as major cellular deregulated processes in the MIO-M1 DM1 cells. Our findings indicate the involvement of an altered immune response in glia cells, opening new windows for the study of glia as potential contributor of the CNS symptoms in DM1.


Subject(s)
Mutation , Myotonic Dystrophy/metabolism , Myotonin-Protein Kinase/genetics , Neuroglia/metabolism , Transcriptome , 3' Untranslated Regions , Alternative Splicing , Cell Line , Cell Nucleus/metabolism , Central Nervous System/metabolism , Exons , Gene Expression Profiling , Gene Expression Regulation , Genotype , Humans , Immune System , Inflammation , Myotonic Dystrophy/genetics , Oligonucleotide Array Sequence Analysis , RNA/metabolism , Trinucleotide Repeat Expansion
6.
Front Genet ; 11: 578712, 2020.
Article in English | MEDLINE | ID: mdl-33193700

ABSTRACT

Cellular commitment and differentiation involve highly coordinated mechanisms by which tissue-specific genes are activated while others are repressed. These mechanisms rely on the activity of specific transcription factors, chromatin remodeling enzymes, and higher-order chromatin organization in order to modulate transcriptional regulation on multiple cellular contexts. Tissue-specific transcription factors are key mediators of cell fate specification with the ability to reprogram cell types into different lineages. A classic example of a master transcription factor is the muscle specific factor MyoD, which belongs to the family of myogenic regulatory factors (MRFs). MRFs regulate cell fate determination and terminal differentiation of the myogenic precursors in a multistep process that eventually culminate with formation of muscle fibers. This developmental progression involves the activation and proliferation of muscle stem cells, commitment, and cell cycle exit and fusion of mononucleated myoblast to generate myotubes and myofibers. Although the epigenetics of muscle regeneration has been extensively addressed and discussed over the recent years, the influence of higher-order chromatin organization in skeletal muscle regeneration is still a field of development. In this review, we will focus on the epigenetic mechanisms modulating muscle gene expression and on the incipient work that addresses three-dimensional genome architecture and its influence in cell fate determination and differentiation to achieve skeletal myogenesis. We will visit known alterations of genome organization mediated by chromosomal fusions giving rise to novel regulatory landscapes, enhancing oncogenic activation in muscle, such as alveolar rhabdomyosarcomas (ARMS).

7.
Methods Mol Biol ; 1752: 145-155, 2018.
Article in English | MEDLINE | ID: mdl-29564770

ABSTRACT

Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.


Subject(s)
Chromatin Immunoprecipitation/methods , Embryo, Mammalian/metabolism , Animals , Epigenesis, Genetic/genetics , Female , Mice , Muscle Development/genetics , Muscle Development/physiology , MyoD Protein/genetics , Myogenin/genetics , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL