Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 181(1): 115-124, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33566103

ABSTRACT

The northern Gulf of Mexico has a long history of polycyclic aromatic hydrocarbon (PAH) contamination from anthropogenic activities, natural oil seepages, and the 2010 Deepwater Horizon explosion and oil spill. The continental shelf of the same area is a known breeding ground for sperm whales (Physeter macrocephalus). To evaluate PAH-DNA damage, a biomarker for potential cancer risk, we compared skin biopsies collected from Gulf of Mexico sperm whales in 2012 with skin biopsies collected from sperm whales in areas of the Pacific Ocean in 1999-2001. All samples were obtained by crossbow and comprised both epidermis and subcutaneous blubber. To evaluate exposure, 7 carcinogenic PAHs were analyzed in lipids extracted from Pacific Ocean sperm whale blubber, pooled by sex, and location. To evaluate PAH-DNA damage, portions of all tissue samples were formalin-fixed, paraffin-embedded, sectioned, and examined for PAH-DNA adducts by immunohistochemistry (IHC) using an antiserum elicited against benzo[a]pyrene-modified DNA, which crossreacts with several high molecular weight carcinogenic PAHs bound to DNA. The IHC showed widespread epidermal nuclear localization of PAH-DNA adducts in the Gulf of Mexico whales (n = 15) but not in the Pacific Ocean whales (n = 4). A standard semiquantitative scoring system revealed significantly higher PAH-DNA adducts in the Gulf of Mexico whales compared to the whales from the Pacific Ocean study (p = .0002).


Subject(s)
Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Biopsy , DNA Adducts , Environmental Monitoring , Gulf of Mexico , Humans , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Sperm Whale , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Mol Mutagen ; 60(1): 29-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30307653

ABSTRACT

Carcinogenic polycyclic aromatic hydrocarbons (PAHs) were disposed directly into the Saguenay River of the St. Lawrence Estuary (SLE) by local aluminum smelters (Quebec, Canada) for 50 years (1926-1976). PAHs in the river sediments are likely etiologically related to gastrointestinal epithelial cancers observed in 7% of 156 mature (>19-year old) adult beluga found dead along the shorelines. Because DNA adduct formation provides a critical link between exposure and cancer induction, and because PAH-DNA adducts are chemically stable, we hypothesized that SLE beluga intestine would contain PAH-DNA adducts. Using an antiserum specific for DNA modified with several carcinogenic PAHs, we stained sections of paraffin-embedded intestine from 51 SLE beluga (0-63 years), 4 Cook Inlet (CI) Alaska beluga (0-26 years), and 20 beluga (0-46 years) living in Arctic areas (Eastern Beaufort Sea, Eastern Chukchi Sea, Point Lay Alaska) and aquaria, all with low PAH contamination. Stained sections showed nuclear light-to-dark pink color indicating the presence of PAH-DNA adducts concentrated in intestinal crypt epithelial lining cells. Scoring of whole tissue sections revealed higher values for the 51 SLE beluga, compared with the 20 Arctic and aquarium beluga (P = 0.003). The H-scoring system, applied to coded individual photomicrographs, confirmed that SLE beluga and CI beluga had levels of intestinal PAH-DNA adducts significantly higher than Arctic and aquarium beluga (P = 0.003 and 0.02, respectively). Furthermore, high levels of intestinal PAH-DNA adducts in four SLE beluga with gastrointestinal cancers, considered as a group, support a link of causality between PAH exposure and intestinal cancer in SLE beluga. Environ. Mol. Mutagen. 60:29-41, 2019. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Carcinogenesis/chemically induced , DNA Adducts/toxicity , DNA Damage/drug effects , Epithelial Cells/pathology , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/pathology , Intestinal Mucosa/pathology , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Arctic Regions , Beluga Whale , Fibroblasts/drug effects , Fibroblasts/pathology , Intestinal Mucosa/cytology , Mice , Water Pollutants, Chemical/toxicity
3.
Carcinogenesis ; 35(5): 1172-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24501327

ABSTRACT

The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.


Subject(s)
DNA Adducts/metabolism , DNA/metabolism , Tamoxifen/metabolism , Uterus/metabolism , Animals , DNA/chemistry , DNA Adducts/adverse effects , DNA Adducts/chemistry , Endometrium/metabolism , Erythrocebus patas , Female , Humans , Myometrium/metabolism , Tamoxifen/chemistry
4.
J Virol ; 82(10): 4853-61, 2008 May.
Article in English | MEDLINE | ID: mdl-18337573

ABSTRACT

Papillomavirus E2 proteins play a central role in regulating viral gene expression and replication. DNA-binding activity is associated with the C-terminal domain of E2, which forms a stable dimer, while the N-terminal domain is responsible for E2's replication and transactivation functions. The crystal structure of the latter domain revealed a second dimerization interface on E2 which may be responsible for DNA loop formation in the regulatory region of the human papillomavirus (HPV) genome. We investigated the biological significance of the N-terminal dimerization by introducing single amino acid substitutions into the dimerization interface. As expected, these substitutions did not influence the C-terminal dimerization and DNA-binding functions of E2. However, the mutations led to reduced transactivation of a synthetic E2-responsive reporter gene, while HPV DNA replication was unaffected. The effect of the mutations on DNA looping was visualized by atomic force microscopy. While wild-type E2 was able to generate DNA loops, all three mutant E2 proteins were defective in this ability. Our results suggest that N-terminal dimerization plays a role in E2-mediated transactivation, probably via DNA looping, a common mechanism for remote regulation of gene transcription.


Subject(s)
DNA-Binding Proteins/metabolism , Human papillomavirus 16/physiology , Oncogene Proteins, Viral/metabolism , Virus Replication/physiology , Amino Acid Substitution/genetics , Artificial Gene Fusion , Cell Line , DNA, Viral/metabolism , DNA, Viral/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Electrophoretic Mobility Shift Assay , Genes, Reporter , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Human papillomavirus 16/genetics , Humans , Microscopy, Atomic Force , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Protein Binding , Protein Structure, Quaternary , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL