Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Cancer ; 152(10): 2024-2031, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36214792

ABSTRACT

Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Frameshift Mutation , DNA Mismatch Repair
2.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35732349

ABSTRACT

The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms, Hereditary Nonpolyposis , Brain Neoplasms , Cancer Vaccines/therapeutic use , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/prevention & control , DNA Mismatch Repair , Humans , Immunotherapy/methods , Neoplastic Syndromes, Hereditary
3.
Gastroenterology ; 161(4): 1288-1302.e13, 2021 10.
Article in English | MEDLINE | ID: mdl-34224739

ABSTRACT

BACKGROUND & AIMS: DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS: A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS: We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS: Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.


Subject(s)
Antigens, Neoplasm/pharmacology , Cancer Vaccines/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Frameshift Mutation , Immunogenetic Phenomena , Peptide Fragments/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Databases, Genetic , Disease Models, Animal , Epitopes , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Mice, Inbred C57BL , Mice, Knockout , MutS Homolog 2 Protein/genetics , Naproxen/pharmacology , Peptide Fragments/genetics , Peptide Fragments/immunology , Tumor Burden/drug effects , Tumor Microenvironment , Vaccination , Vaccine Efficacy
4.
iScience ; 24(4): 102389, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33981976

ABSTRACT

Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.

5.
Nat Commun ; 11(1): 4740, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958755

ABSTRACT

The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers.


Subject(s)
Frameshift Mutation , Microsatellite Repeats/genetics , Neoplasms/genetics , Neoplasms/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , HLA Antigens/genetics , Humans , INDEL Mutation , Immunologic Surveillance , Microsatellite Instability , Mutation Rate , Selection, Genetic , beta 2-Microglobulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL