Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
J. physiol. biochem ; 79(2): 415-425, may. 2023.
Article in English | IBECS | ID: ibc-222552

ABSTRACT

The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets. In mouse and rat adipocytes, opipramol did not activate triglyceride breakdown, but partially inhibited the lipolytic action of isoprenaline or forskolin, especially in the 10–100 μM range. At 100 μM, opipramol also inhibited the glucose incorporation into lipids without limiting the glucose transport in mouse adipocytes. In pancreatic islets, opipramol acutely impaired the stimulation of insulin secretion by various activators (high glucose, high potassium, forskolin...). Similar inhibitory effects were observed in mouse and rat pancreatic islets and were reproduced with 100 μM haloperidol, in a manner that was independent from alpha2-adrenoceptor activation but sensitive to Ca2+ release. All these results indicated that the anxiolytic drug opipramol is not only active in central nervous system but also in multiple peripheral tissues and endocrine organs. Due to its capacity to modulate the lipid and carbohydrate metabolisms, opipramol deserves further studies in order to explore its therapeutic potential for the treatment of obese and diabetic states. (AU)


Subject(s)
Animals , Mice , Rats , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacokinetics , Opipramol/metabolism , Opipramol/pharmacology , Islets of Langerhans/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Adipocytes/metabolism , Glucose/metabolism , Insulin Secretion , Insulin/metabolism , Lipids/pharmacology
2.
J Physiol Biochem ; 79(2): 415-425, 2023 May.
Article in English | MEDLINE | ID: mdl-36821072

ABSTRACT

The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets. In mouse and rat adipocytes, opipramol did not activate triglyceride breakdown, but partially inhibited the lipolytic action of isoprenaline or forskolin, especially in the 10-100 µM range. At 100 µM, opipramol also inhibited the glucose incorporation into lipids without limiting the glucose transport in mouse adipocytes. In pancreatic islets, opipramol acutely impaired the stimulation of insulin secretion by various activators (high glucose, high potassium, forskolin...). Similar inhibitory effects were observed in mouse and rat pancreatic islets and were reproduced with 100 µM haloperidol, in a manner that was independent from alpha2-adrenoceptor activation but sensitive to Ca2+ release. All these results indicated that the anxiolytic drug opipramol is not only active in central nervous system but also in multiple peripheral tissues and endocrine organs. Due to its capacity to modulate the lipid and carbohydrate metabolisms, opipramol deserves further studies in order to explore its therapeutic potential for the treatment of obese and diabetic states.


Subject(s)
Anti-Anxiety Agents , Islets of Langerhans , Opipramol , Humans , Rats , Mice , Animals , Insulin/metabolism , Insulin Secretion , Opipramol/metabolism , Opipramol/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Lipogenesis , Colforsin/pharmacology , Colforsin/metabolism , Islets of Langerhans/metabolism , Adipocytes/metabolism , Lipolysis , Glucose/metabolism , Lipids/pharmacology
3.
Membranes (Basel) ; 10(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019703

ABSTRACT

Gas-permeable membranes technology presents a high potential for nitrogen (N) recovery from wastewaters rich in ammonia (NH3). The EU project Ammonia Trapping (AT) is aimed at transferring knowledge from the lab-scale level to on-farm pilot-scale level, using this technology to recover NH3 from livestock wastewaters. The goal of this study is to report the results of an on-farm pilot-scale demonstration plant using gas-permeable membranes to recover N from raw swine manure. After a setup optimization of the plant, stable, and continuous operation was achieved. The maximum NH3 recovery rate obtained was 38.20 g NH3-N m-2 membrane day-1. This recovery rate was greatly affected by the temperature of the process. In addition to its contribution to NH3 emissions reduction, this technology contributes to the recovery of nutrients in the form of a concentrated stable ammonium sulphate solution. This solution contained 3.2% of N, which makes it suitable for fertigation. The economic approach revealed an economic feasibility of the technology, resulting in a cost of 2.07 € per kg N recovered.

SELECTION OF CITATIONS
SEARCH DETAIL