Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Brain ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366623

ABSTRACT

Alterations in RNA-splicing are a molecular hallmark of several neurological diseases, including muscular dystrophies where mutations in genes involved in RNA metabolism or characterised by alterations in RNA splicing have been described. Here, we present five patients from two unrelated families with a limb-girdle muscular dystrophy (LGMD) phenotype carrying a biallelic variant in SNUPN gene. Snurportin-1, the protein encoded by SNUPN, plays an important role in the nuclear transport of small nuclear ribonucleoproteins (snRNPs), essential components of the spliceosome. We combine deep phenotyping, including clinical features, histopathology and muscle magnetic resonance image (MRI), with functional studies in patient-derived cells and muscle biopsies to demonstrate that variants in SNUPN are the cause of a new type of LGMD according to current definition. Moreover, an in vivo model in Drosophila melanogaster further supports the relevance of Snurportin-1 in muscle. SNUPN patients show a similar phenotype characterised by proximal weakness starting in childhood, restrictive respiratory dysfunction and prominent contractures, although interindividual variability in terms of severity even in individuals from the same family was found. Muscle biopsy showed myofibrillar-like features consisting of myotilin deposits and Z-disc disorganisation. MRI showed predominant impairment of paravertebral, vasti, sartorius, gracilis, peroneal and medial gastrocnemius muscles. Conservation and structural analyses of Snurportin-1 p.Ile309Ser variant suggest an effect in nuclear-cytosol snRNP trafficking. In patient-derived fibroblasts and muscle, cytoplasmic accumulation of snRNP components is observed, while total expression of Snurportin-1 and snRNPs remains unchanged, which demonstrates a functional impact of SNUPN variant in snRNP metabolism. Furthermore, RNA-splicing analysis in patients' muscle showed widespread splicing deregulation, in particular in genes relevant for muscle development and splicing factors that participate in the early steps of spliceosome assembly. In conclusion, we report that SNUPN variants are a new cause of limb girdle muscular dystrophy with specific clinical, histopathological and imaging features, supporting SNUPN as a new gene to be included in genetic testing of myopathies. These results further support the relevance of splicing-related proteins in muscle disorders.

2.
Sci Rep ; 14(1): 3365, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336890

ABSTRACT

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/pathology , Muscular Atrophy/metabolism , Muscles/metabolism , Collagen/metabolism , Disease Progression , Image Cytometry , Muscle, Skeletal/metabolism
3.
J Hum Genet ; 69(5): 187-196, 2024 May.
Article in English | MEDLINE | ID: mdl-38355957

ABSTRACT

We report the cases of two Spanish pediatric patients with hypotonia, muscle weakness and feeding difficulties at birth. Whole-exome sequencing (WES) uncovered two new homozygous VAMP1 (Vesicle Associated Membrane Protein 1) splicing variants, NM_014231.5:c.129+5 G > A in the boy patient (P1) and c.341-24_341-16delinsAGAAAA in the girl patient (P2). This gene encodes the vesicle-associated membrane protein 1 (VAMP1) that is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. VAMP1 has a highly variable C-terminus generated by alternative splicing that gives rise to three main isoforms (A, B and D), being VAMP1A the only isoform expressed in the nervous system. In order to assess the pathogenicity of these variants, expression experiments of RNA for VAMP1 were carried out. The c.129+5 G > A and c.341-24_341-16delinsAGAAAA variants induced aberrant splicing events resulting in the deletion of exon 2 (r.5_131del; p.Ser2TrpfsTer7) in the three isoforms in the first case, and the retention of the last 14 nucleotides of the 3' of intron 4 (r.340_341ins341-14_341-1; p.Ile114AsnfsTer77) in the VAMP1A isoform in the second case. Pathogenic VAMP1 variants have been associated with autosomal dominant spastic ataxia 1 (SPAX1) and with autosomal recessive presynaptic congenital myasthenic syndrome (CMS). Our patients share the clinical manifestations of CMS patients with two important differences: they do not show the typical electrophysiological pattern that suggests pathology of pre-synaptic neuromuscular junction, and their muscular biopsies present hypertrophic fibers type 1. In conclusion, our data expand both genetic and phenotypic spectrum associated with VAMP1 variants.


Subject(s)
Homozygote , Myasthenic Syndromes, Congenital , Phenotype , Vesicle-Associated Membrane Protein 1 , Female , Humans , Male , Alternative Splicing/genetics , Exome Sequencing , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , Protein Isoforms/genetics , RNA Splicing/genetics , Vesicle-Associated Membrane Protein 1/genetics , Infant , Child, Preschool
4.
Neuro Oncol ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411438

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date the reason for this sex-specific aggressiveness remains unclear. Therefore, the aim of this study is to investigate tumor processes that explain these sex differences. METHODS: This was a retrospective study of GBM patients which was stratified according to sex. Cohort with 73 tumors were analyzed with immunohistochemistry, RNA-seq and RT-qPCR to characterize differences in vascular and immunological profiles. Transcriptomic profiling, GSEA and pathway enrichment analysis were used for discovery molecular pathways predominant in each group. We further investigated the therapeutic effect of Bevacizumab (VEGFA blocking antibody) in retrospective GBM cohort (36 tumors) based on sex differences. RESULTS: We found that under hypoxic tumor conditions, two distinct tumor immuno-angiogenic ecosystems develop linked to sex differences and ESR1 expression are generated. One of these subgroups, which includes male patients with low ESR1 expression, is characterized by vascular fragility associated with the appearance of regions of necrosis and high inflammation (called necroinflamed tumors). This male-specific tumor subtype shows high inflammation related to MDSC infiltration. Using this stratification, we identified a possible group of patients who could respond to bevacizumab (BVZ) and revealed a genetic signature that may find clinical applications as a predictor of those who may benefit most from this treatment. CONCLUSIONS: This study provides a stratification based on the sexual differences in GBM, which associates the poor prognosis with the presence of immunosuppressive myeloid cells in the necrotic areas. This new stratification could change the current prognosis of GBM and identifies those who respond to BVZ treatment.

5.
J Neurol ; 271(2): 986-994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37907725

ABSTRACT

OBJECTIVE: To describe a new phenotype associated with a novel variant in BAG3: autosomal dominant adult-onset distal hereditary motor neuronopathy. METHODS: This study enrolled eight affected individuals from a single family and included a comprehensive evaluation of the clinical phenotype, neurophysiologic testing, muscle MRI, muscle biopsy and western blot of BAG3 protein in skeletal muscle. Genetic workup included whole exome sequencing and segregation analysis of the detected variant in BAG3. RESULTS: Seven patients developed slowly progressive and symmetric distal weakness and atrophy of lower limb muscles, along with absent Achilles reflexes. The mean age of onset was 46 years. The neurophysiological examination was consistent with the diagnosis of distal motor neuronopathy. One 57-year-old female patient was minimally symptomatic. The pattern of inheritance was autosomal dominant, with one caveat: one female patient who was an obligate carrier of the variant died at the age of 73 years without exhibiting any muscle weakness. The muscle biopsies revealed neurogenic changes. A novel heterozygous truncating variant c.1513_1514insGGAC (p.Val505GlyfsTer6) in the gene BAG3 was identified in all affected family members. CONCLUSIONS: We report an autosomal dominant adult-onset distal hereditary motor neuronopathy with incomplete penetrance in women as a new phenotype related to a truncating variant in the BAG3 gene. Our findings expand the phenotypic spectrum of BAG3-related disorders, which previously included dilated cardiomyopathy, myofibrillar myopathy and adult-onset Charcot-Marie-Tooth type 2 neuropathy. Variants in BAG3 should be considered in the differential diagnosis of distal hereditary motor neuronopathies.


Subject(s)
Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Adult , Humans , Female , Middle Aged , Aged , Pedigree , Charcot-Marie-Tooth Disease/genetics , Phenotype , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/pathology , Mutation/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics
6.
Neuromuscul Disord ; 33(12): 983-987, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016875

ABSTRACT

Welander distal myopathy typically manifests in late adulthood and is caused by the founder TIA1 c.1150G>A (p.Glu384Lys) variant in families of Swedish and Finnish descent. Recently, a similar phenotype has been attributed to the digenic inheritance of TIA1 c.1070A>G (p.Asn357Ser) and SQSTM1 c.1175C>T (p.Pro392Leu) variants. We describe two unrelated Spanish patients presenting with slowly progressive gait disturbance, distal-predominant weakness, and mildly elevated creatine kinase (CK) levels since their 6th decade. Electromyography revealed abnormal spontaneous activity and a myopathic pattern. Muscle magnetic resonance imaging (MRI) showed marked fatty replacement in distal leg muscles. A muscle biopsy, performed on one patient, revealed myopathic changes with rimmed vacuoles. Both patients carried the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variants. Digenic inheritance is supported by evidence from unrelated pedigrees and a plausible biological interaction between both proteins in protein quality control processes. Recent functional studies and additional case descriptions further support this. Clinical suspicion is necessary to seek both variants.


Subject(s)
Distal Myopathies , Muscular Diseases , Adult , Humans , Distal Myopathies/pathology , Electromyography , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Sequestosome-1 Protein/genetics , T-Cell Intracellular Antigen-1/genetics
7.
Brain ; 146(12): 5235-5248, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37503746

ABSTRACT

The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.


Subject(s)
Muscular Dystrophies , Adult , Humans , Muscular Dystrophies/genetics , Muscle, Skeletal/metabolism , Extracellular Matrix Proteins
8.
J Med Genet ; 60(10): 965-973, 2023 10.
Article in English | MEDLINE | ID: mdl-37197784

ABSTRACT

BACKGROUND: Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders. TRAPPC11-related LGMD is an autosomal-recessive condition characterised by muscle weakness and intellectual disability. METHODS: A clinical and histopathological characterisation of 25 Roma individuals with LGMD R18 caused by the homozygous TRAPPC11 c.1287+5G>A variant is reported. Functional effects of the variant on mitochondrial function were investigated. RESULTS: The c.1287+5G>A variant leads to a phenotype characterised by early onset muscle weakness, movement disorder, intellectual disability and elevated serum creatine kinase, which is similar to other series. As novel clinical findings, we found that microcephaly is almost universal and that infections in the first years of life seem to act as triggers for a psychomotor regression and onset of seizures in several individuals with TRAPPC11 variants, who showed pseudometabolic crises triggered by infections. Our functional studies expanded the role of TRAPPC11 deficiency in mitochondrial function, as a decreased mitochondrial ATP production capacity and alterations in the mitochondrial network architecture were detected. CONCLUSION: We provide a comprehensive phenotypic characterisation of the pathogenic variant TRAPPC11 c.1287+5G>A, which is founder in the Roma population. Our observations indicate that some typical features of golgipathies, such as microcephaly and clinical decompensation associated with infections, are prevalent in individuals with LGMD R18.


Subject(s)
Intellectual Disability , Microcephaly , Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Roma , Humans , Roma/genetics , Phenotype , Muscular Dystrophies, Limb-Girdle/genetics , Muscle Weakness , Vesicular Transport Proteins
9.
J Clin Med ; 12(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176748

ABSTRACT

BACKGROUND: Congenital myasthenic syndromes (CMSs) and primary mitochondrial myopathies (PMMs) can present with ptosis, external ophthalmoplegia, and limb weakness. METHODS: Our method involved the description of three cases of CMS that were initially characterized as probable PMM. RESULTS: All patients were male and presented with ptosis and/or external ophthalmoplegia at birth, with proximal muscle weakness and fatigue on physical exertion. After normal repetitive nerve stimulation (RNS) studies performed on facial muscles, a muscle biopsy (at a median age of 9) was performed to rule out congenital myopathies. In all three cases, the biopsy findings (COX-negative fibers or respiratory chain defects) pointed to PMM. They were referred to our neuromuscular unit in adulthood to establish a genetic diagnosis. However, at this time, fatigability was evident in the physical exams and RNS in the spinal accessory nerve showed a decremental response in all cases. Targeted genetic studies revealed pathogenic variants in the MUSK, DOK7, and RAPSN genes. The median diagnostic delay was 29 years. Treatment resulted in functional improvement in all cases. CONCLUSIONS: Early identification of CMS is essential as medical treatment can provide clear benefits. Its diagnosis can be challenging due to phenotypic overlap with other debilitating disorders. Thus, a high index of suspicion is necessary to guide the diagnostic strategy.

10.
Am J Physiol Cell Physiol ; 324(3): C769-C776, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36745529

ABSTRACT

Congenital myopathies are a vast group of genetic muscle diseases. Among the causes are mutations in the MYH2 gene resulting in truncated type IIa myosin heavy chains (MyHCs). The precise cellular and molecular mechanisms by which these mutations induce skeletal muscle symptoms remain obscure. Hence, in the present study, we aimed to explore whether such genetic defects would alter the presence as well as the post-translational modifications of MyHCs and the functionality of myosin molecules. For this, we dissected muscle fibers from four myopathic patients with MYH2 truncating mutations and from five human healthy controls. We then assessed 1) MyHCs presence/post-translational modifications using LC/MS; 2) relaxed myosin conformation and concomitant ATP consumption with a loaded Mant-ATP chase setup; 3) myosin activation with an unloaded in vitro motility assay; and 4) cellular force production with a myofiber mechanical setup. Interestingly, the type IIa MyHC with one additional acetylated lysine (Lys35-Ac) was present in the patients. This was accompanied by 1) a higher ATP demand of myosin heads in the disordered-relaxed conformation; 2) faster actomyosin kinetics; and 3) reduced muscle fiber force. Overall, our findings indicate that MYH2 truncating mutations impact myosin presence/functionality in human adult mature myofibers by disrupting the ATPase activity and actomyosin complex. These are likely important molecular pathological disturbances leading to the myopathic phenotype in patients.


Subject(s)
Actomyosin , Muscular Diseases , Adult , Humans , Muscular Diseases/pathology , Mutation/genetics , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Processing, Post-Translational/genetics
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674634

ABSTRACT

Rhabdoid meningiomas (RM) shows heterogeneous histological findings, and a wide variety of chromosomal copy number alterations (CNA) are associated with an unpredictable course of the disease. In this study, we analyzed a series of 305 RM samples from patients previously reported in the literature and 33 samples from 23 patients studied in our laboratory. Monosomy 22-involving the minimal but most common recurrent region loss of the 22q11.23 chromosomal region was the most observed chromosomal alteration, followed by losses of chromosomes 14, 1, 6, and 19, polysomies of chromosomes 17, 1q, and 20, and gains of 13q14.2, 10p13, and 21q21.2 chromosomal regions. Based on their CNA profile, RM could be classified into two genetic subgroups with distinct clinicopathologic features characterized by the presence of (1) chromosomal losses only and (2) combined losses and gains of several chromosomes. The latter displays a higher frequency of WHO grade 3 tumors and poorer clinical outcomes.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/genetics , Meningioma/pathology , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Chromosome Aberrations , Monosomy
12.
J Med Genet ; 60(6): 615-619, 2023 06.
Article in English | MEDLINE | ID: mdl-36535754

ABSTRACT

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , RNA, Messenger/genetics , Mutation , Multiplex Polymerase Chain Reaction
13.
Neuro Oncol ; 25(8): 1443-1449, 2023 08 03.
Article in English | MEDLINE | ID: mdl-36571817

ABSTRACT

BACKGROUND: Gliomas with IDH1/2 mutations without 1p19q codeletion have been identified as the distinct diagnostic entity of IDH mutant astrocytoma (IDHmut astrocytoma). Homozygous deletion of Cyclin-dependent kinase 4 inhibitor A/B (CDKN2A/B) has recently been incorporated in the grading of these tumors. The question of whether histologic parameters still contribute to prognostic information on top of the molecular classification, remains unanswered. Here we evaluated consensus histologic parameters for providing additional prognostic value in IDHmut astrocytomas. METHODS: An international panel of seven neuropathologists scored 13 well-defined histologic features in virtual microscopy images of 192 IDHmut astrocytomas from EORTC trial 22033-26033 (low-grade gliomas) and 263 from EORTC 26053 (CATNON) (1p19q non-codeleted anaplastic glioma). For 192 gliomas the CDKN2A/B status was known. Consensus (agreement ≥ 4/7 panelists) histologic features were tested together with homozygous deletion (HD) of CDKN2A/B for independent prognostic power. RESULTS: Among consensus histologic parameters, the mitotic count (cut-off of 2 mitoses per 10 high power fields standardized to a field diameter of 0.55 mm and an area of 0.24 mm2) significantly influences PFS (P = .0098) and marginally the OS (P = .07). Mitotic count also significantly affects the PFS of tumors with HD CDKN2A/B, but not the OS, possibly due to limited follow-up data. CONCLUSION: The mitotic index (cut-off 2 per 10 40× HPF) is of prognostic significance in IDHmut astrocytomas without HD CDKN2A/B. Therefore, the mitotic index may direct the therapeutic approach for patients with IDHmut astrocytomas with native CDKN2A/B status.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Prognosis , Brain Neoplasms/pathology , Homozygote , Consensus , Sequence Deletion , Glioma/pathology , Astrocytoma/genetics , Astrocytoma/pathology , Mutation , Isocitrate Dehydrogenase/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics
14.
Acta Neuropathol ; 145(1): 127-143, 2023 01.
Article in English | MEDLINE | ID: mdl-36264506

ABSTRACT

DNAJ/HSP40 co-chaperones are integral to the chaperone network, bind client proteins and recruit them to HSP70 for folding. We performed exome sequencing on patients with a presumed hereditary muscle disease and no genetic diagnosis. This identified four individuals from three unrelated families carrying an unreported homozygous stop gain (c.856A > T; p.Lys286Ter), or homozygous missense variants (c.74G > A; p.Arg25Gln and c.785 T > C; p.Leu262Ser) in DNAJB4. Affected patients presented with axial rigidity and early respiratory failure requiring ventilator support between the 1st and 4th decade of life. Selective involvement of the semitendinosus and biceps femoris muscles was seen on MRI scans of the thigh. On biopsy, muscle was myopathic with angular fibers, protein inclusions and occasional rimmed vacuoles. DNAJB4 normally localizes to the Z-disc and was absent from muscle and fibroblasts of affected patients supporting a loss of function. Functional studies confirmed that the p.Lys286Ter and p.Leu262Ser mutant proteins are rapidly degraded in cells. In contrast, the p.Arg25Gln mutant protein is stable but failed to complement for DNAJB function in yeast, disaggregate client proteins or protect from heat shock-induced cell death consistent with its loss of function. DNAJB4 knockout mice had muscle weakness and fiber atrophy with prominent diaphragm involvement and kyphosis. DNAJB4 knockout muscle and myotubes had myofibrillar disorganization and accumulated Z-disc proteins and protein chaperones. These data demonstrate a novel chaperonopathy associated with DNAJB4 causing a myopathy with early respiratory failure. DNAJB4 loss of function variants may lead to the accumulation of DNAJB4 client proteins resulting in muscle dysfunction and degeneration.


Subject(s)
Muscular Diseases , Respiratory Insufficiency , Animals , Mice , Mutation/genetics , Muscular Diseases/diagnostic imaging , Muscular Diseases/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation, Missense , Respiratory Insufficiency/genetics , Respiratory Insufficiency/complications , Respiratory Insufficiency/pathology , Muscle, Skeletal/pathology
17.
Cancers (Basel) ; 14(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35625997

ABSTRACT

BACKGROUND: MET-signaling and midkine (ALK ligand) promote glioma cell maintenance and resistance against anticancer therapies. ALK and c-MET inhibition with crizotinib have a preclinical therapeutic rationale to be tested in newly diagnosed GBM. METHODS: Eligible patients received crizotinib with standard radiotherapy (RT)/temozolomide (TMZ) followed by maintenance with crizotinib. The primary objective was to determine the recommended phase 2 dose (RP2D) in a 3 + 3 dose escalation (DE) strategy and safety evaluation in the expansion cohort (EC). Secondary objectives included progression-free (PFS) and overall survival (OS) and exploratory biomarker analysis. RESULTS: The study enrolled 38 patients. The median age was 52 years (33-76), 44% were male, 44% were MGMT methylated, and three patients had IDH1/2 mutation. In DE, DLTs were reported in 1/6 in the second cohort (250 mg/QD), declaring 250 mg/QD of crizotinib as the RP2D for the EC. In the EC, 9/25 patients (32%) presented grade ≥3 adverse events. The median follow up was 18.7 months (m) and the median PFS was 10.7 m (95% CI, 7.7-13.8), with a 6 m PFS and 12 m PFS of 71.5% and 38.8%, respectively. At the time of this analysis, 1 died without progression and 24 had progressed. The median OS was 22.6 m (95% CI, 14.1-31.1) with a 24 m OS of 44.5%. Molecular biomarkers showed no correlation with efficacy. CONCLUSIONS: The addition of crizotinib to standard RT and TMZ for newly diagnosed GBM was safe and the efficacy was encouraging, warranting prospective validation in an adequately powered, randomized controlled study.

18.
Am J Pathol ; 192(8): 1151-1166, 2022 08.
Article in English | MEDLINE | ID: mdl-35605642

ABSTRACT

Late-onset Pompe disease (LOPD) is a rare genetic disorder produced by mutations in the GAA gene and is characterized by progressive muscle weakness. LOPD muscle biopsies show accumulation of glycogen along with the autophagic vacuoles associated with atrophic muscle fibers. The expression of molecules related to muscle fiber atrophy in muscle biopsies of LOPD patients was studied using immunofluorescence and real-time PCR. BCL2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a well-known atrogene, was identified as a potential mediator of muscle fiber atrophy in LOPD muscle biopsies. Vacuolated fibers in LOPD patient muscle biopsies were smaller than nonvacuolated fibers and expressed BNIP3. The current data suggested that BNIP3 expression is regulated by inhibition of the AKT-mammalian target of rapamycin pathway, leading to phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 by AMP-activated protein kinase. Myoblasts and myotubes obtained from LOPD patients and age-matched controls were studied to confirm these results using different molecular techniques. Myotubes derived from LOPD patients were likewise smaller and expressed BNIP3. Conclusively, transfection of BNIP3 into control myotubes led to myotube atrophy. These findings suggest a cascade that starts with the inhibition of the AKT-mammalian target of rapamycin pathway and activation of BNIP3 expression, leading to progressive muscle fiber atrophy. These results open the door to potential new treatments targeting BNIP3 to reduce its deleterious effects on muscle fiber atrophy in Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Atrophy/pathology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Humans , Membrane Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/metabolism
19.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457051

ABSTRACT

In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer's disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.


Subject(s)
Alzheimer Disease , Dementia , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genetic Predisposition to Disease , Humans , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Neuroimaging
20.
J Med Genet ; 59(11): 1069-1074, 2022 11.
Article in English | MEDLINE | ID: mdl-35393337

ABSTRACT

BACKGROUND: Biallelic pathogenic variants in FXR1 have recently been associated with two congenital myopathy phenotypes: a severe form associated with hypotonia, long bone fractures, respiratory insufficiency and infantile death, and a milder form characterised by proximal muscle weakness with survival into adulthood. OBJECTIVE: We report eight patients from four unrelated families with biallelic pathogenic variants in exon 15 of FXR1. METHODS: Whole exome sequencing was used to detect variants in FXR1. RESULTS: Common clinical features were noted for all patients, which included proximal myopathy, normal serum creatine kinase levels and diffuse muscle atrophy with relative preservation of the quadriceps femoris muscle on muscle imaging. Additionally, some patients with FXR1-related myopathy had respiratory involvement and required bilevel positive airway pressure support. Muscle biopsy showed multi-minicores and type I fibre predominance with internalised nuclei. CONCLUSION: FXR1-related congenital myopathy is an emerging entity that is clinically recognisable. Phenotypic variability associated with variants in FXR1 can result from differences in variant location and type and is also observed between patients homozygous for the same variant, rendering specific genotype-phenotype correlations difficult. Our work broadens the phenotypic spectrum of FXR1-related congenital myopathy.


Subject(s)
Muscular Diseases , Humans , Pedigree , Mutation , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Homozygote , Creatine Kinase/genetics , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...