Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Article in English | MEDLINE | ID: mdl-38702011

ABSTRACT

INTRODUCTION: Women with premutation (PM) of the FMR1 gene may suffer from reduced ovarian reserve or even premature ovarian insufficiency (POI). We studied hormonal and ultrasound ovarian reserve, fertility and fertility preservation outcomes in these patients. PATIENTS AND METHOD: Retrospective cohort study of 63 female FMR1 premutation carriers. RESULTS: Sixty-three female patients bearing an FMR1 premutation were included. Median age was 30 years [26.5-35]. Median number of CGG triplets was 83 [77.2-92]. Before diagnosis of PM, 19 women (30%) had had in all 35 pregnancies, resulting in 20 births, including 7 affected children. After diagnosis of PM, 17 women (26.1%) had in all 23 pregnancies, at a median age of 34.5 years [32.2-36.0]: 2 after preimplantation genetic diagnosis, 3 after oocyte donation, 18 spontaneously, and 5 ending in medical termination for Fragile X syndrome. Thirty-three patients (52.4%) had POI diagnosis (median age, 30 years [27-34]) with median FSH level 84 IU/L [50.5-110] and median AMH level 0.08 ng/ml [0.01-0.19]. After POI diagnosis, 8 women had in all 9 pregnancies: 3 following oocyte donation, and 6 spontaneous in 5 women (15.1%). Eight of the 9 pregnancies resulted in a live birth (including 2 affected children) and 1 in medical termination for trisomy 13. The median age of the 30 patients without POI was 31 years [25.2-35.0]. Thirteen women (20.6%) underwent fertility preservation, at a median age of 29 years [24-33]: FSH 7.7 IU/L [6.8-9.9], AMH 1.1 ng/mL [0.95-2.1], antral follicle count 9.5 [7.7-14.7]. A median 15 oocytes [10-26] were cryopreserved in a median 2 cycles [1-3]. At the time of writing, no oocytes had yet been thawed for in vitro fertilization. CONCLUSIONS: This study shows the importance of early fertility preservation after diagnosis of FMR1 premutation in women, due to early deterioration of ovarian reserve. Genetic counseling is essential in these patients, as spontaneous pregnancies are not uncommon, even in cases of impaired ovarian reserve, and can lead to birth of affected children.

3.
Clin Genet ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424388

ABSTRACT

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.

4.
Prenat Diagn ; 44(1): 35-48, 2024 01.
Article in English | MEDLINE | ID: mdl-38165124

ABSTRACT

OBJECTIVE: To describe the MR features enabling prenatal diagnosis of pontocerebellar hypoplasia (PCH). METHOD: This was a retrospective single monocentre study. The inclusion criteria were decreased cerebellar biometry on dedicated neurosonography and available fetal Magnetic Resonance Imaging (MRI) with PCH diagnosis later confirmed either genetically or clinically on post-natal MRI or by autopsy. The exclusion criteria were non-available MRI and sonographic features suggestive of a known genetic or other pathologic diagnosis. The collected data were biometric or morphological imaging parameters, clinical outcome, termination of pregnancy (TOP), pathological findings and genetic analysis (karyotyping, chromosomal microarray, DNA sequencing targeted or exome). PCH was classified as classic, non-classic, chromosomal, or unknown type. RESULTS: Forty-two fetuses were diagnosed with PCH, of which 27 were referred for decreased transverse cerebellar diameter at screening ultrasound. Neurosonography and fetal MRI were performed at a mean gestational age of 29 + 4 and 31 + 0 weeks, respectively. Termination of pregnancy occurred. Pregnancy was terminated in 24 cases. Neuropathological examination confirmed the diagnosis in 24 cases and genetic testing identified abnormalities in 29 cases (28 families, 14 chromosomal anomaly). Classic PCH is associated with pontine atrophy and small MR measurements decreasing with advancing gestation. CONCLUSION: This is the first large series of prenatally diagnosed PCHs. Our study shows the essential contribution of fetal MRI to the prenatal diagnosis of PCH. Classic PCHs are particularly severe and are associated with certain MR features.


Subject(s)
Cerebellar Diseases , Magnetic Resonance Imaging , Prenatal Diagnosis , Pregnancy , Female , Humans , Infant , Retrospective Studies , Follow-Up Studies , Prenatal Diagnosis/methods , Magnetic Resonance Imaging/methods , Ultrasonography, Prenatal/methods
5.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284452

ABSTRACT

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Caregivers , Child, Preschool , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/therapy , DEAD-box RNA Helicases , Self Report , Infant
6.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37857482

ABSTRACT

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Subject(s)
Intellectual Disability , Nervous System Malformations , Infant, Newborn , Female , Humans , Corpus Callosum , Agenesis of Corpus Callosum/genetics , Nervous System Malformations/genetics , Intellectual Disability/genetics , Cognition , Zinc Finger E-box-Binding Homeobox 1/genetics
7.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740550

ABSTRACT

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Subject(s)
Intellectual Disability , Microcephaly , Male , Female , Child , Humans , Microcephaly/diagnosis , Microcephaly/genetics , Growth Charts , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Syndrome , Body Mass Index , Body Height/genetics
8.
Am J Med Genet A ; 194(4): e63479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37987117

ABSTRACT

FMR1 premutation female carriers are at risk of developing premature/primary ovarian insufficiency (POI) with an incomplete penetrance. In this study, we determined the CGG repeat size among 1095 women with diminished ovarian reserve (DOR) / POI and characterized the CGG/AGG substructure in 44 women carrying an abnormal FMR1 repeat expansion number, compared to a group of 25 pregnant women carrying an abnormal FMR1 CGG repeat size. Allelic complexity scores of the FMR1 gene were calculated and compared between the two groups. In the DOR/POI cohort, 2.1% of women presented with an intermediate repeat size and 1.9% with a premutation. Our results suggest that the risk of POI is highest in the mid-range of CGG repeats. We observed that the allelic score is significantly higher in POI women compared to the pregnant women group (p-value = 0.02). We suggest that a high allelic score due to more than 2 AGG interspersions in the context of an intermediate number of repetitions could favor POI. Larger studies are still needed to evaluate the relevance of this new tool for the determination of the individual risk of developing POI in women with abnormal number of CGG repeats.


Subject(s)
Fragile X Syndrome , Primary Ovarian Insufficiency , Pregnancy , Female , Humans , Alleles , Primary Ovarian Insufficiency/genetics , Fragile X Mental Retardation Protein/genetics , Biological Variation, Population , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion/genetics
9.
Eur J Hum Genet ; 32(2): 190-199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872275

ABSTRACT

Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.


Subject(s)
Neurodevelopmental Disorders , Pathology, Molecular , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , DNA Methylation , Biomarkers
10.
J Med Genet ; 61(2): 103-108, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37879892

ABSTRACT

The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Male , Humans , Female , Genes, Homeobox , Homeodomain Proteins/genetics , Autism Spectrum Disorder/genetics , Mutation/genetics , Transcription Factors/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Agenesis of Corpus Callosum/genetics
11.
Brain ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038360

ABSTRACT

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function (LoF) or gain-of-function (GoF) properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12), and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for LoF and GoF variants. GoF variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age one month), hypertonic, and more often had movement disorders, including hyperekplexia. Patients with LoF variants were older at the time of seizure onset (median age 16 months), hypotonic, and had sleeping disturbances. LoF and GoF variants were disease-causing in both sexes but affected males often carried de novo or hemizygous LoF variants inherited from healthy mothers, whereas all but one affected females had de novo heterozygous GoF variants.

12.
Genes (Basel) ; 14(9)2023 08 23.
Article in English | MEDLINE | ID: mdl-37761804

ABSTRACT

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder. In addition, patients with SNIBCPS exhibit typical dysmorphic features including macrocephaly, hypertelorism, sparse eyebrows, broad forehead, prominent nose and pointed chin. The severity of the neurological effects as well as the presence of other features is variable among subjects. SNIBCPS is caused likely by pathogenic and pathogenic variants in CHD3 (Chromodomain Helicase DNA Binding Protein 3), which seems to be involved in chromatin remodeling by deacetylating histones. Here, we report 20 additional patients with clinical features compatible with SNIBCPS from 17 unrelated families with confirmed likely pathogenic/pathogenic variants in CHD3. Patients were analyzed by whole exome sequencing and segregation studies were performed by Sanger sequencing. Patients in this study showed different pathogenic variants affecting several functional domains of the protein. Additionally, none of the variants described here were reported in control population databases, and most computational predictors suggest that they are deleterious. The most common clinical features of the whole cohort of patients are global developmental delay (98%) and speech disorder/delay (92%). Other frequent features (51-74%) include intellectual disability, hypotonia, hypertelorism, abnormality of vision, macrocephaly and prominent forehead, among others. This study expands the number of individuals with confirmed SNIBCPS due to pathogenic or likely pathogenic variants in CHD3. Furthermore, we add evidence of the importance of the application of massive parallel sequencing for NDD patients for whom the clinical diagnosis might be challenging and where deep phenotyping is extremely useful to accurately manage and follow up the patients.


Subject(s)
Developmental Disabilities , Hypertelorism , Intellectual Disability , Language Development Disorders , Megalencephaly , Humans , DNA Helicases/genetics , Histones , Intellectual Disability/genetics , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Developmental Disabilities/genetics
13.
Eur J Med Genet ; 66(8): 104797, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285932

ABSTRACT

The SMARCC1 gene has been involved in congenital ventriculomegaly with aqueduct stenosis but only a few patients have been reported so far, with no antenatal cases, and it is currently not annotated as a morbid gene in OMIM nor in the Human Phenotype Ontology. Most of the reported variants are loss of function (LoF) and are often inherited from unaffected parents. SMARCC1 encodes a subunit of the mSWI/SNF complex and affects the chromatin structure and expression of several genes. Here, we report the two first antenatal cases of SMARCC1 LoF variants detected by Whole Genome Sequencing (WGS). Ventriculomegaly is the common feature in those fetuses. Both identified variants are inherited from a healthy parent, which supports the reported incomplete penetrance of this gene. This makes the identification of this condition in WGS as well as the genetic counseling challenging.


Subject(s)
Hydrocephalus , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/genetics , Fetus , Genetic Counseling , Transcription Factors/genetics
14.
Eur J Hum Genet ; 31(9): 1023-1031, 2023 09.
Article in English | MEDLINE | ID: mdl-37344571

ABSTRACT

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).


Subject(s)
Epilepsy , Neurodegenerative Diseases , Humans , Nuclear Proteins/genetics , Epilepsy/genetics , Phenotype , Genotype , Genetic Association Studies , Neurodegenerative Diseases/genetics , Atrophy
15.
Genet Med ; 25(8): 100885, 2023 08.
Article in English | MEDLINE | ID: mdl-37165955

ABSTRACT

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Subject(s)
Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Epilepsy/genetics , Epilepsy/pathology , Genetic Association Studies , Intellectual Disability/genetics , Phenotype , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics
16.
Prenat Diagn ; 43(6): 746-755, 2023 06.
Article in English | MEDLINE | ID: mdl-37173814

ABSTRACT

OBJECTIVE: Recent studies have evaluated prenatal exome sequencing (pES) for abnormalities of the corpus callosum (CC). The objective of this study was to compare imaging phenotype and genotype findings. METHOD: This multicenter retrospective study included fetuses with abnormalities of the CC between 2018 and 2020 by ultrasound and/or MRI and for which pES was performed. Abnormalities of the CC were classified as complete (cACC) or partial (pACC) agenesis of the CC, short CC (sCC), callosal dysgenesis (CD), interhemispheric cyst (IHC), or pericallosal lipoma (PL), isolated or not. Only pathogenic (class 5) or likely pathogenic (class 4) (P/LP) variants were considered. RESULTS: 113 fetuses were included. pES identified P/LP variants for 3/29 isolated cACC, 3/19 isolated pACC, 0/10 isolated sCC, 5/10 isolated CD, 5/13 non-isolated cACC, 3/6 non-isolated pACC, 8/11 non-isolated CD and 0/12 isolated IHC and PL. Associated cerebellar abnormalities were significantly associated with P/LP variants (OR = 7.312, p = 0.027). No correlation was found between phenotype and genotype, except for fetuses with a tubulinopathy and an MTOR pathogenic variant. CONCLUSIONS: P/LP variants were more frequent in CD and in non-isolated abnormalities of the CC. No such variants were detected for fetuses with isolated sCC, IHC and PL.


Subject(s)
Corpus Callosum , Ultrasonography, Prenatal , Pregnancy , Female , Humans , Corpus Callosum/diagnostic imaging , Retrospective Studies , Ultrasonography, Prenatal/methods , Agenesis of Corpus Callosum/diagnostic imaging , Agenesis of Corpus Callosum/genetics , Magnetic Resonance Imaging/methods , Genotype , Phenotype , Chloride Channels , Prenatal Diagnosis
17.
Eur J Hum Genet ; 31(8): 967-970, 2023 08.
Article in English | MEDLINE | ID: mdl-36828924

ABSTRACT

ADNP is a well-known gene implicated in intellectual disability and its molecular spectrum consists mainly in loss of function variant in the ADNP last and largest exon. Here, we report the first description of a patient with intellectual disability identified with an intragenic inversion in ADNP. RNAseq experiment showed a splice skipping of the inversed exons. Moreover, in-silico analysis of initiating ATGs in the mutated transcript using contextual Kozak score suggested that several initiating ATGs were likely used to translate poisonous out-of-frame ORFs and would lead to the suppression of any in-frame rescuing translation, thereby causing haploinsufficiency. As constitutive Alu sequences with high homology were identified at both breakpoints in reversed orientation in the reference genome, we hypothesized that Alu-mediated non-allelic-homologous recombination was responsible for this rearrangement. Therefore, as this inversion is not detectable by exome sequencing, this mechanism could be a potential underdiagnosed recurrent mutation in ADNP-related disorders.


Subject(s)
Intellectual Disability , Humans , Exons , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Mutation , Nerve Tissue Proteins/genetics
18.
Eur J Med Genet ; 66(1): 104670, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414205

ABSTRACT

BACKGROUND: Since the first description of a BRWD3-associated nonsydromic intellectual disability (ID) disorder in 2007, 21 additional families have been reported in the literature. METHODS: Using exome sequencing (ES) and international data sharing, we identified 14 additional unrelated individuals with pathogenic BRWD3 variants (12 males and 2 females, including one with skewed X-inactivation). We reviewed the 31 previously published cases in the literature with clinical data available, and describe the collective phenotypes of 43 males and 2 females, with 33 different BRWD3 variants. RESULTS: The most common features in males (excluding one patient with a mosaic variant) included ID (39/39 males), speech delay (24/25 males), postnatal macrocephaly (28/35 males) with prominent forehead (18/25 males) and large ears (14/26 males), and obesity (12/27 males). Both females presented with macrocephaly, speech delay, and epilepsy, while epilepsy was only observed in 4/41 males. Among the 28 variants with available segregation reported, 19 were inherited from unaffected mothers and 9 were de novo. CONCLUSION: This study demonstrates that the BRWD3-related phenotypes are largely non-specific, leading to difficulty in clinical recognition of this disorder. A genotype-first approach, however, allows for the more efficient diagnosis of the BRWD3-related nonsyndromic ID. The refined clinical features presented here may provide additional diagnostic assistance for reverse phenotyping efforts.


Subject(s)
Intellectual Disability , Language Development Disorders , Megalencephaly , Male , Female , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Intellectual Disability/genetics , Syndrome , Megalencephaly/genetics , Phenotype , Mutation , Transcription Factors/genetics
19.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Article in English | MEDLINE | ID: mdl-36369750

ABSTRACT

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Subject(s)
DiGeorge Syndrome , Down Syndrome , Epilepsy , Intellectual Disability , Microcephaly , Humans , Chromosomes, Human, Pair 1 , Muscle Hypotonia , Chromosome Deletion , Phenotype
20.
J Med Genet ; 60(4): 346-351, 2023 04.
Article in English | MEDLINE | ID: mdl-36270767

ABSTRACT

BACKGROUND: Low uptake of presymptomatic testing and medically assisted reproduction in families impacted by neurogenetic diseases prompted us to investigate how reproductive options are considered and whether there is a relationship with perceived severity of the disease. We hypothesised that self-estimated severity would influence opinion on reproductive options and that prenatal/preimplantation diagnosis would be a motivation to inform relatives about their risk. METHODS: We invited people impacted by neurogenetic diseases to evaluate the severity of their familial disease using analogic visual scales and to answer questionnaires about reproductive choices and intrafamilial communication. We compared answers between diseases and with the perceived severity of each disease. RESULTS: We analysed 562 questionnaires. Participants were impacted by Huntington disease (n=307), spinocerebellar ataxias (n=114), Steinert myotonic dystrophy (n=82) and amyotrophic lateral sclerosis/frontotemporal dementia (n=59). Self-estimated severity differed between pathologies (p<0.0001). Overall, participants considered prenatal diagnosis (78.0±34.4 out of 100) and preimplantation diagnosis (75.2±36.1 out of 100) justified more than termination of pregnancy (68.6±38.5 out of 100). They were less in favour of gamete donation (48.3±39.8 out of 100) or pregnancy abstention (43.3±40.3 out of 100). The greater the perceived severity of the disease, the more reproductive options were considered justified, except for gamete donation. Prenatal/preimplantation diagnosis was a motivation to inform relatives for only 55.3% of participants (p=0.01). CONCLUSION: Self-estimated severity minimally impacts opinions towards reproductive options. Medically assisted reproduction procedures are rarely sought and do not motivate familial communication.


Subject(s)
Preimplantation Diagnosis , Reproduction , Pregnancy , Female , Humans , Genetic Testing , Prenatal Diagnosis , Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...