Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
PLoS Pathog ; 20(8): e1011965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159284

ABSTRACT

RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid. We found that exoribonuclease PNPase and endoribonuclease RNase III inhibit T3SS and yop gene transcription by repressing the synthesis of LcrF, the master activator of Yop-T3SS. Loss of both RNases led to an increase in lcrF mRNA levels. Our work indicates that PNPase exerts its influence via YopD, which accelerates lcrF mRNA degradation. Loss of RNase III, on the other hand, results in the downregulation of the CsrB and CsrC RNAs, thereby increasing the availability of active CsrA, which has been shown previously to enhance lcrF mRNA translation and stability. This CsrA-promoted increase of lcrF mRNA translation could be supported by other factors promoting the protein translation efficiency (e.g. IF-3, RimM, RsmG) that were also found to be repressed by RNase III. Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion leads to global reprogramming of the Yersinia transcriptome with a massive shift of the expression from chromosomal to virulence plasmid-encoded genes. A similar reprogramming was also observed in the RNase III-deficient mutant under non-secretion conditions. Overall, our work revealed a complex control system where RNases orchestrate the expression of the T3SS/Yop machinery on multiple levels to antagonize phagocytic uptake and elimination by innate immune cells.


Subject(s)
Gene Expression Regulation, Bacterial , Yersinia pseudotuberculosis , Virulence , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ribonucleases/metabolism , Ribonucleases/genetics , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Yersinia pseudotuberculosis Infections/microbiology
2.
Antimicrob Agents Chemother ; 68(5): e0005724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526080

ABSTRACT

Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.


Subject(s)
Anti-Bacterial Agents , Citrobacter rodentium , Enterobacteriaceae Infections , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Citrobacter rodentium/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Feces/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Gastrointestinal Microbiome/drug effects , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Enterohemorrhagic Escherichia coli/drug effects , Enrofloxacin/pharmacology , Enrofloxacin/therapeutic use , Female , Disease Models, Animal , Dysbiosis/microbiology
3.
Front Microbiol ; 12: 706934, 2021.
Article in English | MEDLINE | ID: mdl-34413840

ABSTRACT

Virulence gene expression of Yersinia pseudotuberculosis changes during the different stages of infection and this is tightly controlled by environmental cues. In this study, we show that the small protein YmoA, a member of the Hha family, is part of this process. It controls temperature- and nutrient-dependent early and later stage virulence genes in an opposing manner and co-regulates bacterial stress responses and metabolic functions. Our analysis further revealed that YmoA exerts this function by modulating the global post-transcriptional regulatory Csr system. YmoA pre-dominantly enhances the stability of the regulatory RNA CsrC. This involves a stabilizing stem-loop structure within the 5'-region of CsrC. YmoA-mediated CsrC stabilization depends on H-NS, but not on the RNA chaperone Hfq. YmoA-promoted reprogramming of the Csr system has severe consequences for the cell: we found that a mutant deficient of ymoA is strongly reduced in its ability to enter host cells and to disseminate to the Peyer's patches, mesenteric lymph nodes, liver and spleen in mice. We propose a model in which YmoA controls transition from the initial colonization phase in the intestine toward the host defense phase important for the long-term establishment of the infection in underlying tissues.

4.
PLoS Pathog ; 16(9): e1008552, 2020 09.
Article in English | MEDLINE | ID: mdl-32966346

ABSTRACT

Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Type VI Secretion Systems/metabolism , Yersinia pseudotuberculosis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Conformation , Stress, Physiological , Type VI Secretion Systems/chemistry , Type VI Secretion Systems/genetics , Yersinia pseudotuberculosis/genetics
5.
PLoS Pathog ; 16(1): e1008184, 2020 01.
Article in English | MEDLINE | ID: mdl-31951643

ABSTRACT

Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host's innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5'-untranslated region (5'-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5'-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens.


Subject(s)
Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/metabolism , 5' Untranslated Regions , Animals , Bacterial Toxins/chemistry , Female , Humans , Inverted Repeat Sequences , Mice , Mice, Inbred BALB C , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Temperature , Virulence , Yersinia pseudotuberculosis/chemistry , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity
6.
Curr Top Microbiol Immunol ; 427: 11-33, 2020.
Article in English | MEDLINE | ID: mdl-31218505

ABSTRACT

Type III secretion systems (T3SSs) are utilized by numerous Gram-negative bacteria to efficiently interact with host cells and manipulate their function. Appropriate expression of type III secretion genes is achieved through the integration of multiple control elements and regulatory pathways that ultimately coordinate the activity of a central transcriptional activator usually belonging to the AraC/XylS family. Although several regulatory elements are conserved between different species and families, each pathogen uses a unique set of control factors and mechanisms to adjust and optimize T3SS gene expression to the need and lifestyle of the pathogen. This is reflected by the complex set of sensory systems and diverse transcriptional, post-transcriptional and post-translational control strategies modulating T3SS expression in response to environmental and intrinsic cues. Whereas some pathways regulate solely the T3SS, others coordinately control expression of one or multiple T3SSs together with other virulence factors and fitness traits on a global scale. Over the past years, several common regulatory themes emerged, e.g., environmental control by two-component systems and carbon metabolism regulators or coupling of T3SS induction with host cell contact/translocon-effector secretion. One of the remaining challenges is to resolve the understudied post-transcriptional regulation of T3SS and the dynamics of the control process.


Subject(s)
Gene Expression Regulation, Bacterial , Transcription, Genetic , Type III Secretion Systems/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Transcription Factors/metabolism , Virulence Factors
7.
Methods Mol Biol ; 2010: 99-116, 2019.
Article in English | MEDLINE | ID: mdl-31177434

ABSTRACT

A detailed knowledge about virulence-relevant genes, as well as where and when they are expressed during the course of an infection is required to obtain a comprehensive understanding of the complex host-pathogen interactions. The development of unbiased probe-independent RNA sequencing (RNA-seq) approaches has dramatically changed transcriptomics. It allows simultaneous monitoring of genome-wide, infection-linked transcriptional alterations of the host tissue and colonizing pathogens. Here, we provide a detailed protocol for the preparation and analysis of lymphatic tissue infected with the mainly extracellularly growing pathogen Yersinia pseudotuberculosis. This method can be used as a powerful tool for the discovery of Yersinia-induced host responses, colonization and persistence strategies of the pathogen, and underlying regulatory processes. Furthermore, we describe computational methods with which we analyzed obtained datasets.


Subject(s)
Gene Expression Profiling/methods , Host-Pathogen Interactions , Sequence Analysis, RNA/methods , Yersinia Infections/genetics , Yersinia/physiology , Animals , Disease Models, Animal , Female , Gene Library , Humans , Lymphoid Tissue/metabolism , Lymphoid Tissue/microbiology , Mice, Inbred BALB C , Peyer's Patches/metabolism , Peyer's Patches/microbiology , Transcriptome , Exome Sequencing , Yersinia Infections/microbiology
8.
PLoS Pathog ; 15(6): e1007813, 2019 06.
Article in English | MEDLINE | ID: mdl-31173606

ABSTRACT

Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Endoribonucleases/metabolism , RNA, Bacterial/metabolism , Type III Secretion Systems/metabolism , Yersinia pseudotuberculosis/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Line , Endoribonucleases/genetics , Humans , RNA, Bacterial/genetics , Type III Secretion Systems/genetics , Yersinia pseudotuberculosis/genetics
9.
mSystems ; 4(2)2019.
Article in English | MEDLINE | ID: mdl-31020044

ABSTRACT

Yersinia enterocolitica is a zoonotic pathogen and an important cause of bacterial gastrointestinal infections in humans. Large-scale population genomic analyses revealed genetic and phenotypic diversity of this bacterial species, but little is known about the differences in the transcriptome organization, small RNA (sRNA) repertoire, and transcriptional output. Here, we present the first comparative high-resolution transcriptome analysis of Y. enterocolitica strains representing highly pathogenic phylogroup 2 (serotype O:8) and moderately pathogenic phylogroup 3 (serotype O:3) grown under four infection-relevant conditions. Our transcriptome sequencing (RNA-seq) approach revealed 1,299 and 1,076 transcriptional start sites and identified strain-specific sRNAs that could contribute to differential regulation among the phylogroups. Comparative transcriptomics further uncovered major gene expression differences, in particular, in the temperature-responsive regulon. Multiple virulence-relevant genes are differentially regulated between the two strains, supporting an ecological separation of phylogroups with certain niche-adapted properties. Strong upregulation of the ystA enterotoxin gene in combination with constitutive high expression of cell invasion factor InvA further showed that the toxicity of recent outbreak O:3 strains has increased. Overall, our report provides new insights into the specific transcriptome organization of phylogroups 2 and 3 and reveals gene expression differences contributing to the substantial phenotypic differences that exist between the lineages. IMPORTANCE Yersinia enterocolitica is a major diarrheal pathogen and is associated with a large range of gut-associated diseases. Members of this species have evolved into different phylogroups with genotypic variations. We performed the first characterization of the Y. enterocolitica transcriptional landscape and tracked the consequences of the genomic variations between two different pathogenic phylogroups by comparing their RNA repertoire, promoter usage, and expression profiles under four different virulence-relevant conditions. Our analysis revealed major differences in the transcriptional outputs of the closely related strains, pointing to an ecological separation in which one is more adapted to an environmental lifestyle and the other to a mostly mammal-associated lifestyle. Moreover, a variety of pathoadaptive alterations, including alterations in acid resistance genes, colonization factors, and toxins, were identified which affect virulence and host specificity. This illustrates that comparative transcriptomics is an excellent approach to discover differences in the functional output from closely related genomes affecting niche adaptation and virulence, which cannot be directly inferred from DNA sequences.

10.
PLoS One ; 14(2): e0211584, 2019.
Article in English | MEDLINE | ID: mdl-30716090

ABSTRACT

The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.


Subject(s)
Bacterial Proteins/metabolism , Protein Kinases/metabolism , Salmonella typhi/metabolism , Salmonella typhi/pathogenicity , Anaerobiosis , Gene Expression Regulation, Bacterial , Genomics , Mutation , Phosphorylation , Salmonella typhi/genetics , Virulence
12.
PLoS Pathog ; 14(2): e1006858, 2018 02.
Article in English | MEDLINE | ID: mdl-29390040

ABSTRACT

Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. Suppression of CNFY function, however, increases interferon-γ-mediated responses, comprising non-inflammatory antimicrobial activities and tolerogenesis. This process is accompanied by a preterm reprogramming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses and facilitates establishment of a commensal-type life style.


Subject(s)
Bacterial Toxins/genetics , Gene Deletion , Inflammation/genetics , Virulence Factors/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis/genetics , Animals , Cecum/microbiology , Disease Progression , Female , Gastroenteritis/genetics , Gastroenteritis/microbiology , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome/physiology , Inflammation/microbiology , Mice , Mice, Inbred BALB C , Organisms, Genetically Modified , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/pathology
13.
Proc Natl Acad Sci U S A ; 114(5): E791-E800, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096329

ABSTRACT

Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.


Subject(s)
Host-Pathogen Interactions/genetics , Transcriptome , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis/genetics , Animals , Female , Mice, Inbred BALB C , Peyer's Patches/metabolism , Peyer's Patches/microbiology , RNA, Messenger/genetics , Sequence Analysis, RNA , Virulence Factors/genetics , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/immunology
14.
RNA Biol ; 14(5): 471-487, 2017 05 04.
Article in English | MEDLINE | ID: mdl-27442607

ABSTRACT

Enteric pathogens of the family Enterobacteriaceae colonize various niches within animals and humans in which they compete with intestinal commensals and are attacked by the host immune system. To survive these hostile environments they possess complex, multilayer regulatory networks that coordinate the control of virulence factors, host-adapted metabolic functions and stress resistance. An important part of these intricate control networks are RNA-based control systems that enable the pathogen to fine-tune its responses. Recent next-generation sequencing approaches revealed a large repertoire of conserved and species-specific riboregulators, including numerous cis- and trans-acting non-coding RNAs, sensory RNA elements (RNA thermometers, riboswitches), regulatory RNA-binding proteins and RNA degrading enzymes which regulate colonization factors, toxins, host defense processes and virulence-relevant physiological and metabolic processes. All of which are important cues for pathogens to sense and respond to fluctuating conditions during the infection. This review covers infection-relevant riboregulators of E. coli, Salmonella, Shigella and Yersinia, highlights their versatile regulatory mechanisms, complex target regulons and functions, and discusses emerging topics and future challenges to fully understand and exploit RNA-based control to combat bacterial infections.


Subject(s)
Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Gene Expression Regulation, Bacterial/genetics , RNA, Bacterial , Animals , Enterobacteriaceae Infections , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Host-Pathogen Interactions , Humans , Mice , RNA Stability , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Untranslated/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonucleases/metabolism , Riboswitch , Virulence/genetics , Virulence Factors/genetics
15.
Trends Microbiol ; 25(1): 19-34, 2017 01.
Article in English | MEDLINE | ID: mdl-27651123

ABSTRACT

A large repertoire of RNA-based regulatory mechanisms, including a plethora of cis- and trans-acting noncoding RNAs (ncRNAs), sensory RNA elements, regulatory RNA-binding proteins, and RNA-degrading enzymes have been uncovered lately as key players in the regulation of metabolism, stress responses, and virulence of the genus Yersinia. Many of them are strictly controlled in response to fluctuating environmental conditions sensed during the course of the infection, and certain riboregulators have already been shown to be crucial for virulence. Some of them are highly conserved among the family Enterobacteriaceae, while others are genus-, species-, or strain-specific and could contribute to the difference in Yersinia pathogenicity. Importantly, the analysis of Yersinia riboregulators has not only uncovered crucial elements and regulatory mechanisms governing host-pathogen interactions, it also revealed exciting new venues for the design of novel anti-infectives.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , RNA, Antisense/genetics , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Yersinia/genetics , Yersinia/pathogenicity , Animals , Host-Pathogen Interactions , Humans , Riboswitch/genetics , Virulence/genetics , Virulence Factors/genetics
16.
PLoS Pathog ; 12(12): e1006091, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28006011

ABSTRACT

Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.


Subject(s)
Bacterial Proteins/metabolism , Transcription Factors/metabolism , Virulence Factors/metabolism , Yersinia pseudotuberculosis Infections/parasitology , Yersinia pseudotuberculosis/pathogenicity , Animals , Blotting, Western , Disease Models, Animal , Electrophoretic Mobility Shift Assay , Female , Flow Cytometry , Mice , Mice, Inbred BALB C , Temperature , Time-Lapse Imaging , Virulence
17.
J Bacteriol ; 198(20): 2876-86, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27501981

ABSTRACT

UNLABELLED: The twin-arginine translocation (Tat) system mediates the secretion of folded proteins that are identified via an N-terminal signal peptide in bacteria, plants, and archaea. Tat systems are associated with virulence in many bacterial pathogens, and our previous studies revealed that Tat-deficient Yersinia pseudotuberculosis was severely attenuated for virulence. Aiming to identify Tat-dependent pathways and phenotypes of relevance for in vivo infection, we analyzed the global transcriptome of parental and ΔtatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ΔtatC mutant were seen at 26°C during stationary-phase growth, and these included the altered expression of genes related to virulence, stress responses, and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat-dependent phenotypes, including decreased YadA expression, impaired growth under iron-limited and high-copper conditions, as well as acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypic defects observed in the Tat-deficient strain were generally more pronounced than those in mutants lacking the Tat substrate predicted to contribute to that specific function. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection. IMPORTANCE: In addition to its established role in mediating the secretion of housekeeping enzymes, the Tat system has been recognized as being involved in infection. In some clinically relevant bacteria, such as Pseudomonas spp., several key virulence determinants can readily be identified among the Tat substrates. In enteropathogens, such as Yersinia spp., there are no obvious virulence determinants among the Tat substrates. Tat mutants show no growth defect in vitro but are highly attenuated in in vivo This makes Tat an attractive target for the development of novel antimicrobials. Therefore, it is important to establish the causes of the attenuation. Here, we show that the attenuation is likely due to synergistic effects of different Tat-dependent phenotypes that each contributes to lowered in vivo fitness.


Subject(s)
Bacterial Proteins/genetics , Twin-Arginine-Translocation System/metabolism , Yersinia pseudotuberculosis/metabolism , Bacterial Proteins/metabolism , Copper/metabolism , Gene Expression Regulation, Bacterial , Iron/metabolism , Phenotype , Protein Transport , Transcriptome , Twin-Arginine-Translocation System/genetics , Yersinia pseudotuberculosis/genetics
18.
PLoS Genet ; 11(3): e1005087, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25816203

ABSTRACT

One hallmark of pathogenic yersiniae is their ability to rapidly adjust their life-style and pathogenesis upon host entry. In order to capture the range, magnitude and complexity of the underlying gene control mechanisms we used comparative RNA-seq-based transcriptomic profiling of the enteric pathogen Y. pseudotuberculosis under environmental and infection-relevant conditions. We identified 1151 individual transcription start sites, multiple riboswitch-like RNA elements, and a global set of antisense RNAs and previously unrecognized trans-acting RNAs. Taking advantage of these data, we revealed a temperature-induced and growth phase-dependent reprogramming of a large set of catabolic/energy production genes and uncovered the existence of a thermo-regulated 'acetate switch', which appear to prime the bacteria for growth in the digestive tract. To elucidate the regulatory architecture linking nutritional status to virulence we also refined the CRP regulon. We identified a massive remodelling of the CRP-controlled network in response to temperature and discovered CRP as a transcriptional master regulator of numerous conserved and newly identified non-coding RNAs which participate in this process. This finding highlights a novel level of complexity of the regulatory network in which the concerted action of transcriptional regulators and multiple non-coding RNAs under control of CRP adjusts the control of Yersinia fitness and virulence to the requirements of their environmental and virulent life-styles.


Subject(s)
Cyclic AMP Receptor Protein/genetics , Fungal Proteins/genetics , Gene Expression Profiling , Regulon/genetics , Yersinia pseudotuberculosis/genetics , Cyclic AMP/genetics , Cyclic AMP/metabolism , Gene Expression Regulation, Fungal , Gene-Environment Interaction , RNA, Antisense/genetics , RNA, Antisense/isolation & purification , Riboswitch/genetics , Temperature , Transcription Initiation Site , Yersinia pseudotuberculosis/growth & development , Yersinia pseudotuberculosis/pathogenicity
19.
PLoS Pathog ; 11(1): e1004600, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25590628

ABSTRACT

We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.


Subject(s)
Sequence Analysis, RNA/methods , Virulence/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Animals , Cecum/immunology , Cecum/microbiology , Cecum/pathology , Female , Gene Expression Regulation, Bacterial , Genes, Bacterial , Mice , Microarray Analysis , Microbiota/immunology , RNA, Bacterial/genetics , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/pathology
20.
Article in English | MEDLINE | ID: mdl-25368845

ABSTRACT

Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.


Subject(s)
Adaptation, Biological , Host-Pathogen Interactions , Yersinia Infections/microbiology , Yersinia/metabolism , Yersinia/pathogenicity , Animals , Host-Pathogen Interactions/immunology , Humans , Immunity , Life Cycle Stages , Metabolic Networks and Pathways , Virulence , Virulence Factors , Yersinia/growth & development , Yersinia/immunology , Yersinia Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL