Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853831

ABSTRACT

Multiphasic buffer systems have been of greatest interest in electrophoresis and liquid-liquid electrotransfer; this study extends that foundation by exploring the interplay of the geometric and viscous properties of an interleaving oil layer on the electrotransfer of a charged analyte from an aqueous solution into a hydrogel. We utilized finite element analysis to examine two complementary configurations: one being electrotransfer of a charged analyte (protein) in an aqueous phase into a surrounding hydrogel layer and another being electrotransfer of the protein from that originating aqueous phase - through an interleaving oil layer of predetermined viscosity and thickness - and into a surrounding hydrogel layer. Results indicate that the presence of an oil layer leads to increased skew of the injected peak. To explain this difference in injection dispersion, we utilize Probstein's framework and compare the Péclet (Pe) number with the ratio between length scales characteristic to the axial and radial dispersion, respectively. The formulation assigns electrotransfer conditions into six different dispersion regimes. We show that the presence or absence of an interleaving oil layer moves the observed peak dispersion into distinct electrotransfer regimes; the presence of an oil layer augments the electrophoretic mobility mismatch between the different phases, resulting in a five-fold increase in Pe and a six-fold increase in the ratio between the axial to radial dispersion characteristic lengths. We further show that oil viscosity significantly influences resultant injection dispersion. A decrease in oil-layer viscosity from 0.08 Pa·s to 0.02 Pa·s results in a >100% decrease in injection dispersion. Our theoretical predictions were experimentally validated by comparing the electrotransfer regimes of three different mineral oil samples. We show that lowering the oil viscosity to 0.0039 Pa·s results in an injection regime similar to that of the absence of an oil layer. Additionally, we measure the migration distance and show that average electromigration velocity over the transit duration is inversely proportional to the viscosity of an interleaving oil layer. Understanding of the impact of electrotransfer of charged species across multiple immiscible fluid layers on peak dispersion informs the design of multiphasic electrophoresis systems.

2.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38716690

ABSTRACT

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Subject(s)
Dimethylpolysiloxanes , Isoelectric Focusing , Isoelectric Focusing/methods , Humans , Dimethylpolysiloxanes/chemistry , Hydrogen-Ion Concentration , Electrodes , Microfluidic Analytical Techniques/instrumentation , Proton-Motive Force , Lab-On-A-Chip Devices , Gels/chemistry
3.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986875

ABSTRACT

Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire both phenotypic (cell-contact state) and proteomic profile (ERK phosphorylation) on the same HeLa cells, we prepend high-content, whole-cell imaging prior to endpoint cellular-resolution western blot analyses for hundreds of cancer cells cultured on chip. By indexing the phosphorylation level of ERK in each cell or cell-contact cluster to the imaged cell-contact state, we compare ERK signaling between isolated and in-contact cells. We observe attenuated (∼2×) ERK signaling in HeLa cells which are in contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. The contact-dependent differential ERK-phosphorylation corresponds to the differential EGFR distribution on cell surfaces, suggesting the involvement of EGFRs in contact-inhibited ERK signaling. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells, hence providing a new tool into control and scrutiny of cell-cell interactions.

4.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732260

ABSTRACT

To further realize proteomics of archived tissues for translational research, we introduce a hybrid microfluidic platform for high-specificity, high-sensitivity protein detection from individual chemically fixed cells. To streamline processing-to-analysis workflows and minimize signal loss, DropBlot serially integrates sample preparation using droplet-based antigen retrieval from single fixed cells with unified analysis-on-a-chip comprising microwell-based antigen extraction followed by chip-based single-cell western blotting. A water-in-oil droplet formulation proves robust to the harsh chemical (SDS, 6M urea) and thermal conditions (98°C, 1-2 hr.) required for sufficient antigen retrieval, and the electromechanical conditions required for electrotransfer of retrieved antigen from microwell-encapsulated droplets to single-cell electrophoresis. Protein-target retrieval was demonstrated for unfixed, paraformaldehyde-(PFA), and methanol-fixed cells. We observed higher protein electrophoresis separation resolution from PFA-fixed cells with sufficient immunoreactivity confirmed for key targets (HER2, GAPDH, EpCAM, Vimentin) from both fixation chemistries. Multiple forms of EpCAM and Vimentin were detected, a hallmark strength of western-blot analysis. DropBlot of PFA-fixed human-derived breast tumor specimens (n = 5) showed antigen retrieval from cells archived frozen for 6 yrs. DropBlot could provide a precision integrated workflow for single-cell resolution protein-biomarker mining of precious biospecimen repositories.

6.
Anal Chim Acta ; 1244: 340446, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36737142
7.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Article in English | MEDLINE | ID: mdl-35654359

ABSTRACT

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Proteomics/methods
8.
Anal Chem ; 94(6): 2706-2712, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35113539

ABSTRACT

Hydrogels are important structural and operative components of microfluidic systems, finding diverse utility in biological sample preparation and interrogation. One inherent challenge for integrating hydrogels into microfluidic tools is thermodynamic molecular partitioning, which reduces the in-gel concentration of molecular solutes (e.g., biomolecular regents), as compared to the solute concentration in an applied solution. Consequently, biomolecular reagent access to in-gel scaffolded biological samples (e.g., encapsulated cells, microbial cultures, target analytes) is adversely impacted in hydrogels. Further, biomolecular reagents are typically introduced to the hydrogel via diffusion. This passive process requires long incubation periods compared to active biomolecular delivery techniques. Electrotransfer is an active technique used in Western blots and other gel-based immunoassays that overcomes limitations of size exclusion (increasing the total probe mass delivered into gel) and expedites probe delivery, even in millimeter-thick slab gels. While compatible with conventional slab gels, electrotransfer has not been adapted to thin gels (50-250 µm thick), which are of great interest as components of open microfluidic devices (vs enclosed microchannel-based devices). Mechanically delicate, thin gels are often mounted on rigid support substrates (glass, plastic) that are electrically insulating. Consequently, to adapt electrotransfer to thin-gel devices, we replace rigid insulating support substrates with novel, mechanically robust, yet electrically conductive nanoporous membranes. We describe grafting nanoporous membranes to thin-polyacrylamide-gel layers via silanization, characterize the electrical conductivity of silane-treated nanoporous membranes, and report the dependence of in-gel immunoprobe concentration on transfer duration for passive diffusion and active electrotransfer. Alternative microdevice component layers─including the mechanically robust, electrically conductive nanoporous membranes reported here─provide new functionality for integration into an increasing array of open microfluidic systems.


Subject(s)
Acrylic Resins , Hydrogels , Acrylic Resins/chemistry , Blotting, Western , Electric Conductivity , Gels , Hydrogels/chemistry
9.
Photochem Photobiol ; 98(4): 864-873, 2022 07.
Article in English | MEDLINE | ID: mdl-34596899

ABSTRACT

Effective ultraviolet-C (UV-C) decontamination protocols of N95 respirators require validation that the entire N95 surface receives sufficient dose. Photochromic indicators (PCIs) can accurately measure UV-C dose on nonplanar surfaces, but often saturate below doses required to decontaminate porous, multilayered textiles like N95s. Here, we investigate the use of optical attenuators to extend PCI dynamic range while maintaining a near-ideal angular response-critical for accurate measurements of uncollimated UV-C. We show analytically that tuning attenuator refractive index, attenuation coefficient, and thickness can extend dynamic range, but compromises angular response unless the attenuator is an ideal diffuser. To investigate this tradeoff empirically, we stack PCIs behind model specular (floated borosilicate) and diffuse (polytetrafluoroethylene) attenuators, characterize the angular response, and evaluate on-N95 UV-C measurement accuracy within a decontamination system. Both attenuators increase PCI dynamic range >4×, but simultaneously introduce angle-dependent transmittance, which causes location-dependent underestimation of UV-C dose. PCI-borosilicate and PCI-polytetrafluoroethylene stacks underreport true on-N95 dose by (1) 14.7% and 3.6%, respectively, when near-normal to the source lamp array, and (2) 40.8% and 19.8%, respectively, in a steeply sloped location. Overall, we demonstrate that while planar attenuators can increase PCI dynamic range, verifying near-ideal angular response is critical for accurate UV-C measurements.


Subject(s)
Decontamination , Percutaneous Coronary Intervention , Decontamination/methods , Polytetrafluoroethylene , Radiation Dosimeters
10.
ACS Meas Sci Au ; 1(3): 139-146, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34939076

ABSTRACT

Gaining insight into the timing of cell apoptosis events requires single-cell-resolution measurements of cell viability. We explore the supposition that mechanism-based scrutiny of programmed cell death would benefit from same-cell analysis of both the DNA state (intact vs fragmented) and the protein states, specifically the full-length vs cleaved state of the DNA-repair protein PARP1, which is cleaved by caspase-3 during caspase-dependent apoptosis. To make this same-cell, multimode measurement, we introduce the single-cell electrophoresis-based viability and protein (SEVAP) assay. Using SEVAP, we (1) isolate human breast cancer SKBR3 cells in microwells molded in thin polyacrylamide gels, (2) electrophoretically separate protein molecular states and DNA molecular states-using differences in electrophoretic mobility-from each single-cell lysate, and (3) perform in-gel DNA staining and PARP1 immunoprobing. Performed in an open microfluidic device, SEVAP scrutinized hundreds to thousands of individual SKBR3 cells. In each single-cell lysate separation, SEVAP baseline-resolved fragmented DNA from intact DNA (R s = 5.17) as well as cleaved PARP1 from full-length PARP1 (R s = 0.66). Comparing apoptotic and viable cells showed statistically similar profiles (expression, mobility, peak width) of housekeeping protein ß-tubulin (Mann-Whitney U test). Clustering and cross-correlation analysis of DNA migration and PARP1 migration identified nonapoptotic vs apoptotic cells. Clustering analysis further suggested that cleaved PARP1 is a suitable apoptosis marker for this system. SEVAP is an efficient, multimode, end-point assay designed to elucidate cell-to-cell heterogeneity in mechanism-specific signaling during programmed cell death.

11.
Sci Rep ; 11(1): 20341, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645859

ABSTRACT

During public health crises like the COVID-19 pandemic, ultraviolet-C (UV-C) decontamination of N95 respirators for emergency reuse has been implemented to mitigate shortages. Pathogen photoinactivation efficacy depends critically on UV-C dose, which is distance- and angle-dependent and thus varies substantially across N95 surfaces within a decontamination system. Due to nonuniform and system-dependent UV-C dose distributions, characterizing UV-C dose and resulting pathogen inactivation with sufficient spatial resolution on-N95 is key to designing and validating UV-C decontamination protocols. However, robust quantification of UV-C dose across N95 facepieces presents challenges, as few UV-C measurement tools have sufficient (1) small, flexible form factor, and (2) angular response. To address this gap, we combine optical modeling and quantitative photochromic indicator (PCI) dosimetry with viral inactivation assays to generate high-resolution maps of "on-N95" UV-C dose and concomitant SARS-CoV-2 viral inactivation across N95 facepieces within a commercial decontamination chamber. Using modeling to rapidly identify on-N95 locations of interest, in-situ measurements report a 17.4 ± 5.0-fold dose difference across N95 facepieces in the chamber, yielding 2.9 ± 0.2-log variation in SARS-CoV-2 inactivation. UV-C dose at several on-N95 locations was lower than the lowest-dose locations on the chamber floor, highlighting the importance of on-N95 dose validation. Overall, we integrate optical simulation with in-situ PCI dosimetry to relate UV-C dose and viral inactivation at specific on-N95 locations, establishing a versatile approach to characterize UV-C photoinactivation of pathogens contaminating complex substrates such as N95s.


Subject(s)
Decontamination/methods , N95 Respirators/statistics & numerical data , SARS-CoV-2/radiation effects , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/transmission , Dose-Response Relationship, Radiation , Equipment Reuse , Humans , Masks , N95 Respirators/virology , Pandemics , Radiometry/methods , SARS-CoV-2/pathogenicity , Ultraviolet Rays , Virus Inactivation
12.
Analyst ; 146(21): 6621-6630, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34591044

ABSTRACT

While fluorescence readout is a key detection modality for hydrogel-based immunoassays, background fluorescence due to autofluorescence or non-specific antibody interactions impairs the lower limit of detection of fluorescence immunoassays. Chemical modifications to the hydrogel structure impact autofluorescence and non-specific interactions. Benzophenone is a common photoactivatable molecule, and benzophenone methacrylamide (BPMA) has been used for cross-linking protein in polyacrylamide (PA) hydrogels. However, previous studies have suggested that the aromatic structure of benzophenone can contribute to increased autofluorescence and non-specific hydrophobic interactions with unbound fluorescent probes. Here, we synthesize diazirine methacrylamide (DZMA) as an alternative photoactivatable molecule to crosslink into PA hydrogels for in-gel protein capture for in-gel immunoassays. We hypothesize that the less hydrophobic structure of diazirine (based on previously reported predicted and experimental log P values) exhibits both reduced autofluorescence and non-specific hydrophobic interactions. We find that while equal concentrations of DZMA and BPMA result in lower protein target photocapture in the diazirine configuration, increasing the DZMA concentration up to 12 mM improves in-gel protein capture to be on par with previously reported and characterized 3 mM BPMA hydrogels. Furthermore, despite the higher concentration of diazirine, we observe negligible autofluorescence signal and a 50% reduction in immunoassay fluorescence background signal in diazirine gels compared to BPMA gels resulting in comparable signal-to-noise ratios (SNR) of the probed protein target. Finally, we test the utility of DZMA for single-cell immunoblotting in an open microfluidic device and find that protein migrates ∼1.3× faster in DZMA hydrogels than in BPMA hydrogels. However, in DZMA hydrogels we detect only 15% of the protein signal compared to BPMA hydrogels suggesting that the diazirine chemistry results in greater protein losses following electrophoretic separations. We establish that while diazirine has lower background fluorescence signal, which may potentially improve immunoassay performance, the lower capture efficiency of diazirine reduces its utility in open microfluidic systems susceptible to sample losses.


Subject(s)
Microfluidics , Proteins , Electrophoresis , Hydrogels , Immunoassay
13.
SLAS Technol ; 26(6): 637-649, 2021 12.
Article in English | MEDLINE | ID: mdl-34474610

ABSTRACT

New pipelines are required to automate the quantitation of emerging high-throughput electrophoretic (EP) assessment of DNA damage, or proteoform expression in single cells. EP cytometry consists of thousands of Western blots performed on a microscope slide-sized gel microwell array for single cells. Thus, EP cytometry images pose an analysis challenge that blends requirements for accurate and reproducible analysis encountered for both standard Western blots and protein microarrays. Here, we introduce the Summit algorithm to automate array segmentation, peak background subtraction, and Gaussian fitting for EP cytometry. The data structure storage of parameters allows users to perform quality control on identically processed data, yielding a ~6.5% difference in coefficient of quartile variation (CQV) of protein peak area under the curve (AUC) distributions measured by four users. Further, inspired by investigations of background subtraction methods to reduce technical variation in protein microarray measurements, we aimed to understand the trade-offs between EP cytometry analysis throughput and variation. We found an 11%-50% increase in protein peaks that passed quality control with a subtraction method similar to microarray "average on-boundary" versus an axial subtraction method. The background subtraction method only mildly influences AUC CQV, which varies between 1% and 4.5%. Finally, we determined that the narrow confidence interval for peak location and peak width parameters from Gaussian fitting yield minimal uncertainty in protein sizing. The AUC CQV differed by only ~1%-2% when summed over the peak width bounds versus the 95% peak width confidence interval. We expect Summit to be broadly applicable to other arrayed EP separations, or traditional Western blot analysis.


Subject(s)
Algorithms , Proteins , Comet Assay , Electrophoresis , Quality Control
14.
Electrophoresis ; 42(20): 2070-2080, 2021 10.
Article in English | MEDLINE | ID: mdl-34357587

ABSTRACT

From genomics to transcriptomics to proteomics, microfluidic tools underpin recent advances in single-cell biology. Detection of specific proteoforms-with single-cell resolution-presents challenges in detection specificity and sensitivity. Miniaturization of protein immunoblots to single-cell resolution mitigates these challenges. For example, in microfluidic western blotting, protein targets are separated by electrophoresis and subsequently detected using fluorescently labeled antibody probes. To quantify the expression level of each protein target, the fluorescent protein bands are fit to Gaussians; yet, this method is difficult to use with noisy, low-abundance, or low-SNR protein bands, and with significant band skew or dispersion. In this study, we investigate segmentation-based approaches to robustly quantify protein bands from single-cell protein immunoblots. As compared to a Gaussian fitting pipeline, the segmentation pipeline detects >1.5× more protein bands for downstream quantification as well as more of the low-abundance protein bands (i.e., with SNR ∼3). Utilizing deep learning-based segmentation approaches increases the recovery of low-SNR protein bands by an additional 50%. However, we find that segmentation-based approaches are less robust at quantifying poorly resolved protein bands (separation resolution, Rs < 0.6). With burgeoning needs for more single-cell protein analysis tools, we see microfluidic separations as benefitting substantially from segmentation-based analysis approaches.


Subject(s)
Immunoblotting , Microfluidics , Proteins , Blotting, Western , Proteomics
15.
Nat Commun ; 12(1): 4969, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404787

ABSTRACT

Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Genetic Heterogeneity , Actins/genetics , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Differentiation , Cell Line , Heat-Shock Response , Humans , Microtubules/metabolism , Models, Biological , Single-Cell Analysis/methods , Thiazolidines/pharmacology
16.
PLoS One ; 16(7): e0254783, 2021.
Article in English | MEDLINE | ID: mdl-34314438

ABSTRACT

An array of isoforms of the nuclear estrogen receptor alpha (ER-α) protein contribute to heterogeneous response in breast cancer (BCa); yet, a single-cell analysis tool that distinguishes the full-length ER-α66 protein from the activation function-1 deficient ER-α46 isoform has not been reported. Specific detection of protein isoforms is a gap in single-cell analysis tools, as the de facto standard immunoassay requires isoform-specific antibody probes. Consequently, to scrutinize hormone response heterogeneity among BCa tumor cells, we develop a precision tool to specifically measure ER-α66, ER- α46, and eight ER-signaling proteins with single-cell resolution in the highly hetero-clonal MCF-7 BCa cell line. With a literature-validated pan-ER immunoprobe, we distinguish ER-α66 from ER-α46 in each individual cell. We identify ER-α46 in 5.5% of hormone-sensitive (MCF-7) and 4.2% of hormone-insensitive (MDA-MB-231) BCa cell lines. To examine whether the single-cell immunoblotting can capture cellular responses to hormones, we treat cells with tamoxifen and identify different sub-populations of ER-α46: (i) ER-α46 induces phospho-AKT at Ser473, (ii) S6-ribosomal protein, an upstream ER target, activates both ER-α66 and ER-α46 in MCF-7 cells, and (iii) ER-α46 partitions MDA-MB-231 subpopulations, which are responsive to tamoxifen. Unlike other single-cell immunoassays, multiplexed single-cell immunoblotting reports-in the same cell-tamoxifen effects on ER signaling proteins and on distinct isoforms of the ER-α protein.


Subject(s)
Estrogen Receptor alpha/metabolism , Single-Cell Analysis/methods , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Estrogen Receptor alpha/genetics , Female , Humans , Immunoblotting , Phosphorylation/drug effects , Principal Component Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Single-Cell Analysis/instrumentation , Tamoxifen/pharmacology
17.
Anal Chem ; 93(24): 8517-8525, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34106685

ABSTRACT

Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75-µm thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody-protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ∼42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB.


Subject(s)
Proteins , Single-Cell Analysis , Immunoblotting , Ions , Mass Spectrometry
18.
Lab Chip ; 21(12): 2427-2436, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33978041

ABSTRACT

Protein isoforms play a key role in disease progression and arise from mechanisms involving multiple molecular subtypes, including DNA, mRNA and protein. Recently introduced multimodal assays successfully link genomes and transcriptomes to protein expression landscapes. However, the specificity of the protein measurement relies on antibodies alone, leading to major challenges when measuring different isoforms of the same protein. Here we utilize microfluidic design to perform same-cell profiling of DNA, mRNA and protein isoforms (triBlot) on low starting cell numbers (1-100 s of cells). After fractionation lysis, cytoplasmic proteins are resolved by molecular mass during polyacrylamide gel electrophoresis (PAGE), adding a degree of specificity to the protein measurement, while nuclei are excised from the device in sections termed "gel pallets" for subsequent off-chip nucleic acid analysis. By assaying TurboGFP-transduced glioblastoma cells, we observe a strong correlation between protein expression prior to lysis and immunoprobed protein. We measure both mRNA and DNA from retrieved nuclei, and find that mRNA levels correlate with protein abundance in TurboGFP-expressing cells. Furthermore, we detect the presence of TurboGFP isoforms differing by an estimated <1 kDa in molecular mass, demonstrating the ability to discern different proteoforms with the same antibody probe. By directly relating nucleic acid modifications to protein isoform expression in 1-100 s of cells, the triBlot assay holds potential as a screening tool for novel biomarkers in diseases driven by protein isoform expression.


Subject(s)
DNA , Proteomics , Cell Count , Electrophoresis, Polyacrylamide Gel , Protein Isoforms/genetics
19.
20.
PLoS One ; 16(1): e0243554, 2021.
Article in English | MEDLINE | ID: mdl-33406084

ABSTRACT

With COVID-19 N95 shortages, frontline medical personnel are forced to reuse this disposable-but sophisticated-multilayer respirator. Widely used to decontaminate nonporous surfaces, UV-C light has demonstrated germicidal efficacy on porous, non-planar N95 respirators when all surfaces receive ≥1.0 J/cm2 dose. Of utmost importance across disciplines, translation of empirical evidence to implementation relies upon UV-C measurements frequently confounded by radiometer complexities. To enable rigorous on-respirator measurements, we introduce a photochromic indicator dose quantification technique for: (1) UV-C treatment design and (2) in-process UV-C dose validation. While addressing outstanding indicator limitations of qualitative readout and insufficient dynamic range, our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%) required for UV-C dose measurements. In a measurement infeasible with radiometers, we observe a striking ~20× dose variation over N95s within one decontamination system. Furthermore, we adapt consumer electronics for accessible quantitative readout and use optical attenuators to extend indicator dynamic range >10× to quantify doses relevant for N95 decontamination. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical considerations for both photochromic indicators themselves and UV-C decontamination processes.


Subject(s)
Decontamination/methods , N95 Respirators/microbiology , Respiratory Protective Devices/microbiology , COVID-19/prevention & control , Dose-Response Relationship, Radiation , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Equipment Reuse/statistics & numerical data , Humans , Indicators and Reagents/radiation effects , Radiometry/methods , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Ultraviolet Rays , Ventilators, Mechanical/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...