Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(9): e10501, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37706164

ABSTRACT

Previous genetic studies of pollinator wasps associated with a community of strangler figs (Ficus subgenus Urostigma, section Americana) in Central Panama suggest that the wasp species exhibit a range in host specificity across their host figs. To better understand factors that might contribute to this observed range of specificity, we used sticky traps to capture fig-pollinating wasp individuals at 13 Ficus species, sampling at different phases of the reproductive cycle of the host figs (e.g., trees with receptive inflorescences, or vegetative trees, bearing only leaves). We also sampled at other tree species, using them as non-Ficus controls. DNA barcoding allowed us to identify the wasps to species and therefore assign their presence and abundance to host fig species and the developmental phase of that individual tree. We found: (1) wasps were only very rarely captured at non-Ficus trees; (2) nonetheless, pollinators were captured often at vegetative individuals of some host species; (3) overwhelmingly, wasp individuals were captured at receptive host fig trees representing the fig species from which they usually emerge. Our results indicate that wasp occurrence is not random either spatially or temporally within the forest and across these hosts, and that wasp specificity is generally high, both at receptive and vegetative host trees. Therefore, in addition to studies that show chemicals produced by receptive fig inflorescences attract pollinator wasps, we suggest that other cues (e.g., chemicals produced by the leaves) can also play a role in host recognition. We discuss our results in the context of recent findings on the role of host shifts in diversification processes in the Ficus genus.

2.
Ecol Evol ; 13(1): e9673, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699574

ABSTRACT

Obligate pollination mutualisms, in which plant and pollinator lineages depend on each other for reproduction, often exhibit high levels of species specificity. However, cases in which two or more pollinator species share a single host species (host sharing), or two or more host species share a single pollinator species (pollinator sharing), are known to occur in current ecological time. Further, evidence for host switching in evolutionary time is increasingly being recognized in these systems. The degree to which departures from strict specificity differentially affect the potential for hybridization and introgression in the associated host or pollinator is unclear. We addressed this question using genome-wide sequence data from five sympatric Panamanian free-standing fig species (Ficus subgenus Pharmacosycea, section Pharmacosycea) and their six associated fig-pollinator wasp species (Tetrapus). Two of the five fig species, F. glabrata and F. maxima, were found to regularly share pollinators. In these species, ongoing hybridization was demonstrated by the detection of several first-generation (F1) hybrid individuals, and historical introgression was indicated by phylogenetic network analysis. By contrast, although two of the pollinator species regularly share hosts, all six species were genetically distinct and deeply divergent, with no evidence for either hybridization or introgression. This pattern is consistent with results from other obligate pollination mutualisms, suggesting that, in contrast to their host plants, pollinators appear to be reproductively isolated, even when different species of pollinators mate in shared hosts.

3.
Proc Biol Sci ; 289(1967): 20211572, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35042409

ABSTRACT

Sex ratio theory predicts both mean sex ratio and variance under a range of population structures. Here, we compare two genera of phoretic nematodes (Parasitodiplogaster and Ficophagus spp.) associated with 12 fig pollinating wasp species in Panama. The host wasps exhibit classic local mate competition: only inseminated females disperse from natal figs, and their offspring form mating pools that consist of scores of the adult offspring contributed by one or a few foundress mothers. By contrast, in both nematode genera, only sexually undifferentiated juveniles disperse and their mating pools routinely consist of 10 or fewer adults. Across all mating pool sizes, the sex ratios observed in both nematode genera are consistently female-biased (approx. 0.34 males), but markedly less female-biased than is often observed in the host wasps (approx. 0.10 males). In further contrast with their hosts, variances in nematode sex ratios are also consistently precise (significantly less than binomial). The constraints associated with predictably small mating pools within highly subdivided populations appear to select for precise sex ratios that contribute both to the reproductive success of individual nematodes, and to the evolutionary persistence of nematode species. We suggest that some form of environmental sex determination underlies these precise sex ratios.


Subject(s)
Ficus , Rhabditida , Wasps , Animals , Female , Ficus/physiology , Male , Reproduction , Sex Ratio , Wasps/physiology
4.
Mol Ecol ; 31(7): 2106-2123, 2022 04.
Article in English | MEDLINE | ID: mdl-35090071

ABSTRACT

The specificity of pollinator host choice influences opportunities for reproductive isolation in their host plants. Similarly, host plants can influence opportunities for reproductive isolation in their pollinators. For example, in the fig and fig wasp mutualism, offspring of fig pollinator wasps mate inside the inflorescence that the mothers pollinate. Although often host specific, multiple fig pollinator species are sometimes associated with the same fig species, potentially enabling hybridization between wasp species. Here, we study the 19 pollinator species (Pegoscapus spp.) associated with an entire community of 16 Panamanian strangler fig species (Ficus subgenus Urostigma, section Americanae) to determine whether the previously documented history of pollinator host switching and current host sharing predicts genetic admixture among the pollinator species, as has been observed in their host figs. Specifically, we use genome-wide ultraconserved element (UCE) loci to estimate phylogenetic relationships and test for hybridization and introgression among the pollinator species. In all cases, we recover well-delimited pollinator species that contain high interspecific divergence. Even among pairs of pollinator species that currently reproduce within syconia of shared host fig species, we found no evidence of hybridization or introgression. This is in contrast to their host figs, where hybridization and introgression have been detected within this community, and more generally, within figs worldwide. Consistent with general patterns recovered among other obligate pollination mutualisms (e.g. yucca moths and yuccas), our results suggest that while hybridization and introgression are processes operating within the host plants, these processes are relatively unimportant within their associated insect pollinators.


Subject(s)
Ficus , Wasps , Animals , Ficus/genetics , Hybridization, Genetic , Phylogeny , Pollination/genetics , Symbiosis/genetics , Wasps/genetics
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341115

ABSTRACT

Theory identifies factors that can undermine the evolutionary stability of mutualisms. However, theory's relevance to mutualism stability in nature is controversial. Detailed comparative studies of parasitic species that are embedded within otherwise mutualistic taxa (e.g., fig pollinator wasps) can identify factors that potentially promote or undermine mutualism stability. We describe results from behavioral, morphological, phylogenetic, and experimental studies of two functionally distinct, but closely related, Eupristina wasp species associated with the monoecious host fig, Ficus microcarpa, in Yunnan Province, China. One (Eupristina verticillata) is a competent pollinator exhibiting morphologies and behaviors consistent with observed seed production. The other (Eupristina sp.) lacks these traits, and dramatically reduces both female and male reproductive success of its host. Furthermore, observations and experiments indicate that individuals of this parasitic species exhibit greater relative fitness than the pollinators, in both indirect competition (individual wasps in separate fig inflorescences) and direct competition (wasps of both species within the same fig). Moreover, phylogenetic analyses suggest that these two Eupristina species are sister taxa. By the strictest definition, the nonpollinating species represents a "cheater" that has descended from a beneficial pollinating mutualist. In sharp contrast to all 15 existing studies of actively pollinated figs and their wasps, the local F. microcarpa exhibit no evidence for host sanctions that effectively reduce the relative fitness of wasps that do not pollinate. We suggest that the lack of sanctions in the local hosts promotes the loss of specialized morphologies and behaviors crucial for pollination and, thereby, the evolution of cheating.


Subject(s)
Ficus/parasitology , Host-Parasite Interactions , Wasps/physiology , Animals , Behavior, Animal , Biological Evolution , China , Female , Ficus/physiology , Head/anatomy & histology , Oviposition , Phylogeny , Pollen , Pollination , Seasons , Seeds/growth & development , Symbiosis , Wasps/anatomy & histology
6.
PLoS Biol ; 19(8): e3001322, 2021 08.
Article in English | MEDLINE | ID: mdl-34411089

ABSTRACT

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Subject(s)
Acclimatization , Aquatic Organisms/microbiology , Biological Evolution , Ecology , Microbiota , Animals , Ecosystem , Humans , Symbiosis
7.
Nat Commun ; 12(1): 718, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531484

ABSTRACT

Ficus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades of Ficus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughout Ficus evolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.


Subject(s)
Ficus/physiology , Wasps/physiology , Animals , Biological Evolution , Hybridization, Genetic , Phylogeny , Pollination/physiology , Symbiosis/physiology
8.
Nat Commun ; 11(1): 2204, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371877

ABSTRACT

Empirical studies show that plant-soil feedbacks (PSF) can generate negative density dependent (NDD) recruitment capable of maintaining plant community diversity at landscape scales. However, the observation that common plants often exhibit relatively weaker NDD than rare plants at local scales is difficult to reconcile with the maintenance of overall plant diversity. We develop a spatially explicit simulation model that tracks the community dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF effects vary as a function of both host abundance and key microbial traits (e.g., host affinity) in ways that are compatible with both common plants exhibiting relatively weaker local NDD, while promoting overall species diversity. The model generates a series of testable predictions linking key microbial traits and the relative abundance of host species, to the strength and scale of PSF and overall plant community diversity.


Subject(s)
Ecosystem , Mycorrhizae/physiology , Plants/metabolism , Soil Microbiology , Soil/chemistry , Symbiosis/physiology , Algorithms , Feedback, Physiological/physiology , Host Microbial Interactions , Models, Theoretical , Mycorrhizae/classification , Plants/classification , Plants/microbiology , Species Specificity
9.
Nat Commun ; 11(1): 2684, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457365

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Am J Bot ; 107(2): 219-228, 2020 02.
Article in English | MEDLINE | ID: mdl-32072625

ABSTRACT

PREMISE: Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS: First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography-tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS: Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS: Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant-endophyte interactions.


Subject(s)
Cacao , Fungi , Endophytes , Plant Leaves , Plants
11.
Am J Bot ; 107(1): 164-170, 2020 01.
Article in English | MEDLINE | ID: mdl-31889299

ABSTRACT

PREMISE: Variation in pollen-ovule ratios is thought to reflect the degree of pollen transfer efficiency-the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen-ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. METHODS: We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen-ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister-group comparisons to examine whether the shift to active pollination resulted in reduced pollen-ovule ratios. RESULTS: Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen-ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen-ovule ratio. CONCLUSIONS: The results for active pollination systems support the general utility of pollen-ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen-ovule ratio.


Subject(s)
Ovule , Pollination , Animals , Flowers , Pollen , Symbiosis
12.
PLoS Biol ; 17(11): e3000533, 2019 11.
Article in English | MEDLINE | ID: mdl-31710600

ABSTRACT

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Subject(s)
Aquatic Organisms/microbiology , Microbiota/physiology , Symbiosis/physiology , Animals , Bacteria/classification , Ecosystem , Host Microbial Interactions/physiology , Humans
13.
Evolution ; 73(11): 2295-2311, 2019 11.
Article in English | MEDLINE | ID: mdl-31339553

ABSTRACT

The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model-based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.


Subject(s)
Biological Coevolution , Ficus/genetics , Genetic Variation , Pollination , Wasps/genetics , Animals , Ecosystem , Ficus/physiology , Models, Genetic , Wasps/physiology
14.
Int J Parasitol ; 49(3-4): 225-233, 2019 03.
Article in English | MEDLINE | ID: mdl-30742810

ABSTRACT

Ticks are obligatory parasites with complex life cycles that often depend on larger bodied vertebrates as final hosts. These traits make them particularly sensitive to local coextinction with their host. Loss of wildlife abundance and diversity should thus lead to loss of tick abundance and diversity to the point where only generalist tick species remain. However, direct empirical tests of these hypotheses are lacking, despite their relevance to our understanding of tick-borne disease emergence in disturbed environments. Here, we compare vertebrate and tick communities across 12 forest islands and peninsulas in the Panama Canal that ranged 1000-fold in size (2.6-2811.3 ha). We used drag sampling and camera trapping to directly assess the abundance and diversity of communities of questing ticks and vertebrate hosts. We found that the abundance and species richness of ticks were positively related to those of wildlife. Specialist tick species were only present in fragments where their final hosts were found. Further, less diverse tick communities had a higher relative abundance of the generalist tick species Amblyomma oblongoguttatum, a potential vector of spotted fever group rickettsiosis. These findings support the host-parasite coextinction hypothesis, and indicate that loss of wildlife can indeed have cascading effects on tick communities. Our results also imply that opportunities for pathogen transmission via generalist ticks may be higher in habitats with degraded tick communities. If these patterns are general, then tick identities and abundances serve as useful bioindicators of ecosystem health, with low tick diversity reflecting low wildlife diversity and a potentially elevated risk of interspecific disease transmission via remaining host species and generalist ticks.


Subject(s)
Animals, Wild/growth & development , Biodiversity , Extinction, Biological , Forests , Ticks/growth & development , Tropical Climate , Vertebrates/growth & development , Animals , Panama
15.
J Eukaryot Microbiol ; 66(5): 757-770, 2019 09.
Article in English | MEDLINE | ID: mdl-30793409

ABSTRACT

Myxomycetes (plasmodial slime molds) are abundant protist predators that feed on bacteria and other microorganisms, thereby playing important roles in terrestrial nutrient cycling. Despite their significance, little is known about myxomycete communities and the extent to which they are affected by nutrient availability. We studied the influence of long-term addition of N, P, and K on the myxomycete community in a lowland forest in the Republic of Panama. In a previous study, microbial biomass increased with P but not N or K addition at this site. We hypothesized that myxomycetes would increase in abundance in response to P but that they would not respond to the sole addition of N or K. Moist chamber cultures of leaf litter and small woody debris were used to quantify myxomycete abundance. We generated the largest myxomycete dataset (3,381 records) for any single locality in the tropics comprised by 91 morphospecies. In line with our hypothesis, myxomycete abundance increased in response to P addition but did not respond to N or K. Community composition was unaffected by nutrient treatments. This work represents one of very few large-scale and long-term field studies to include a heterotrophic protist highlighting the feasibility and value in doing so.


Subject(s)
Myxomycetes/metabolism , Ecosystem , Forests , Myxomycetes/growth & development , Nitrogen/metabolism , Nutrients/metabolism , Panama , Phosphorus/metabolism , Plant Leaves/parasitology , Potassium/metabolism , Soil/parasitology , Wood/parasitology
16.
New Phytol ; 222(3): 1573-1583, 2019 05.
Article in English | MEDLINE | ID: mdl-30664252

ABSTRACT

Colonization by foliar endophytic fungi can affect the expression of host plant defenses and other ecologically important traits. However, whether endophyte colonization affects the uptake or redistribution of resources within and among host plant tissues remains unstudied. We inoculated leaves of Theobroma cacao with four common colonizers that range in their effect from protective to pathogenic (Colletotrichum tropicale, Pestalotiopsis sp., Colletotrichum theobromicola, or Phytophthora palmivora). We pulsed the soil with nitrogen-15 (15 N) and then traced 15 N uptake and its subsequent distribution to whole plants and individual leaves. At a whole-plant level, C. tropicale-inoculated plants showed significantly greater 15 N uptake than endophyte-free plants did in the same pot. Among leaves within plants, younger leaves were particularly enriched in 15 N, but endophyte inoculation at the individual leaf level did not alter 15 N distribution within plants. However, leaves co-inoculated with pathogenic Phytophthora and protective C. tropicale experienced significantly elevated 15 N content as pathogen damage increased, compared with leaves inoculated only with the pathogen. Further, endophyte-pathogen co-infection also increased total plant biomass. Our results indicate that colonization by foliar endophytes significantly affects N uptake and distribution among and within host plants in ways that appear to be context dependent on other microbiome components.


Subject(s)
Cacao/metabolism , Cacao/microbiology , Colletotrichum/physiology , Endophytes/physiology , Nitrogen/metabolism , Plant Leaves/microbiology , Biomass , Linear Models , Nitrogen Isotopes , Phytophthora
17.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28679727

ABSTRACT

It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree (Theobroma cacao) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale, a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general.


Subject(s)
Cacao/microbiology , Fungi , Microbiota , Plant Leaves/microbiology , Seedlings/microbiology
18.
Int J Parasitol Parasites Wildl ; 5(3): 295-304, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27812506

ABSTRACT

Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida) across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

20.
Am J Bot ; 103(10): 1753-1762, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27562207

ABSTRACT

PREMISE OF THE STUDY: Fig trees and their pollinators, fig wasps, present a powerful model system for studying mutualism stability: both partners depend on each other for reproduction, cooperation levels can be manipulated, and the resulting field-based fitness quantified. Previous work has shown that fig trees can severely reduce the fitness of wasps that do not pollinate by aborting unpollinated figs or reducing the number and size of wasp offspring. Here we evaluated four hypotheses regarding the mechanism of sanctions in four Panamanian fig species. METHODS: We examined wasp and fig samples from field experiments with manipulated levels of pollination. KEY RESULTS: In unpollinated figs, the fig wall and the wasp offspring had a lower dry mass. Unpollinated figs had as many initiated wasp galls as pollinated figs but fewer galls that successfully produced live wasp offspring. Across three experimentally increasing levels of pollination, we found nonlinear increases in fig wall mass, the proportion of wasp galls that develop, and wasp mass. CONCLUSIONS: Our data did not support the hypotheses that lack of pollination prevents gall formation or that fertilized endosperm is required for wasp development. While our data are potentially consistent with the hypothesis that trees produce a wasp-specific toxin in response to lack of pollination, we found the hypothesis that sanctions are a consequence of trees allocating more resources to better-pollinated figs more parsimonious with the aggregate data. Our findings are completely analogous to the selective resource allocation to more beneficial tissues documented in other mutualistic systems.


Subject(s)
Ficus/physiology , Pollination , Symbiosis , Wasps/physiology , Animals , Larva/growth & development , Larva/physiology , Panama , Reproduction , Wasps/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...