Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 12: e17797, 2024.
Article in English | MEDLINE | ID: mdl-39221276

ABSTRACT

Numerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression. However, the identification of additional relevant therapeutic targets has been slow and is further confounded by interactions between the tumor and the surrounding tumor microenvironment. In this work, we attempt to link the state of the human kinome, or kinotype, with cell viability in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We applied classification models to independent kinome perturbation and kinase inhibitor cell screen data, and found that the inferred kinotype of a cell has a significant and predictive relationship with cell viability. We further find that models are able to identify a set of kinases whose behavior in response to perturbation drive the majority of viability responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2, and PIP4K2C. We next utilized these models to predict the response of new, clinical kinase inhibitors that were not present in the initial dataset for model devlopment and conducted a validation screen that confirmed the accuracy of the models. These results suggest that characterizing the perturbed state of the human protein kinome provides significant opportunity for better understanding of signaling behavior and downstream cell phenotypes, as well as providing insight into the broader design of potential therapeutic strategies for PDAC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Cell Survival , Pancreatic Neoplasms , Protein Kinases , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/enzymology , Cell Survival/drug effects , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/enzymology , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/enzymology , Protein Kinases/metabolism , Signal Transduction , Tumor Microenvironment , Protein Kinase Inhibitors/pharmacology
2.
PeerJ ; 11: e16342, 2023.
Article in English | MEDLINE | ID: mdl-38025707

ABSTRACT

Protein kinase activity forms the backbone of cellular information transfer, acting both individually and as part of a broader network, the kinome. Their central role in signaling leads to kinome dysfunction being a common driver of disease, and in particular cancer, where numerous kinases have been identified as having a causal or modulating role in tumor development and progression. As a result, the development of therapies targeting kinases has rapidly grown, with over 70 kinase inhibitors approved for use in the clinic and over double this number currently in clinical trials. Understanding the relationship between kinase inhibitor treatment and their effects on downstream cellular phenotype is thus of clear importance for understanding treatment mechanisms and streamlining compound screening in therapy development. In this work, we combine two large-scale kinome profiling data sets and use them to link inhibitor-kinome interactions with cell line treatment responses (AUC/IC50). We then built computational models on this data set that achieve a high degree of prediction accuracy (R2 of 0.7 and RMSE of 0.9) and were able to identify a set of well-characterized and understudied kinases that significantly affect cell responses. We further validated these models experimentally by testing predicted effects in breast cancer cell lines and extended the model scope by performing additional validation in patient-derived pancreatic cancer cell lines. Overall, these results demonstrate that broad quantification of kinome inhibition state is highly predictive of downstream cellular phenotypes.


Subject(s)
Neoplasms , Phosphotransferases , Humans , Cell Line , Phosphotransferases/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL