Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(6): 4727-4751, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35245051

ABSTRACT

By replacing a phenolic ring of (E)-resveratrol with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new resveratrol-based multitarget-directed ligands (MTDLs) were obtained. They were evaluated in several assays related to oxidative stress and inflammation (monoamine oxidases, nuclear erythroid 2-related factor, quinone reductase-2, and oxygen radical trapping) and then in experiments of increasing complexity (neurogenic properties and neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile: cellular activation of the NRF2-ARE pathway (CD = 9.83 µM), selective inhibition of both hMAO-B and QR2 (IC50s = 8.05 and 0.57 µM), and the best ability to promote hippocampal neurogenesis. It showed a good drug-like profile (positive in vitro central nervous system permeability, good physiological solubility, no glutathione conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective and antioxidant actions in both acute and chronic Alzheimer models using hippocampal tissues. Thus, 4e is an interesting MTDL that could stimulate defensive and regenerative pathways and block early events in neurodegenerative cascades.


Subject(s)
Monoamine Oxidase , Neuroprotective Agents , Antioxidants/metabolism , Antioxidants/pharmacology , Ligands , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Resveratrol/pharmacology
2.
Eur J Med Chem ; 200: 112403, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32447198

ABSTRACT

By linking two N-methyl-N-carbocyclic quaternary ammonium groups to an azobenzene scaffold in meta- or para-positions we generated a series of photoswitchable neuromuscular ligands for which we coined the term "azocuroniums". These compounds switched between the (E)- and (Z)-isomers by light irradiation at 400-450 nm and 335-340 nm, respectively. Meta-azocuroniums were potent nicotinic ligands with a clear selectivity for the muscular nAChRs compared to neuronal α7 and α4ß2 subtypes, showed good solubility in physiologic media, negligible cell toxicity, and would not reach the CNS. Electrophysiological studies in muscle-type nAChRs expressed in Xenopus laevis oocytes showed that (E)-isomers were more potent than (Z)-forms. All meta-azocuroniums were neuromuscular blockers, with the exception of the pyrrolidine derivative that was an agonist. These new meta-azocuroniums, which can be modulated ad libitum by light, could be employed as photoswitchable muscle relaxants with fewer side effects for surgical interventions and as tools to better understand the pharmacology of muscle-type nAChRs.


Subject(s)
Neuromuscular Agents/radiation effects , Nicotinic Agonists/chemistry , Receptors, Nicotinic/metabolism , Animals , Azo Compounds/chemistry , Humans , Isomerism , Ligands , Light , Neuromuscular Agents/chemical synthesis , Nicotinic Agonists/radiation effects , Oocytes , Quaternary Ammonium Compounds/chemistry , Structure-Activity Relationship , Xenopus laevis
3.
Eur J Med Chem ; 194: 112242, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32248004

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are crucial for the normal function of the central nervous system (CNS), and fundamental in memory and learning-related processes. The overactivation of these receptors is associated with numerous neurodegenerative and psychiatric disorders. Therefore, NMDAR is considered a relevant therapeutic target for many CNS disorders. Herein, we report the synthesis and pharmacological evaluation of a new scaffold with antagonistic activity for NMDAR. Specifically, a chemical library of eighteen 1-aminoindan-2-ol tetracyclic lactams was synthesized and screened as NMDAR antagonists. The compounds were obtained by chiral pool synthesis using enantiomerically pure 1-aminoindan-2-ols as chiral inductors, and their stereochemistry was proven by X-ray crystallographic analysis of two target compounds. Most compounds reveal NMDAR antagonism, and eleven compounds display IC50 values in a Ca2+ entry-sensitive fluo-4 assay in the same order of magnitude of memantine, a clinically approved NMDAR antagonist. Docking studies suggest that the novel compounds can act as NMDAR channel blockers since there is a compatible conformation with MK-801 co-crystallized with NMDAR channel. In addition, we show that the tetracyclic 1-aminoindan-2-ol derivatives are brain permeable and non-toxic, and we identify promising hits for further optimization as modulators of the NMDAR function.


Subject(s)
Lactams/pharmacology , Nervous System Diseases/drug therapy , Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Blood-Brain Barrier/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , HEK293 Cells , Hep G2 Cells , Humans , Lactams/chemical synthesis , Lactams/chemistry , Molecular Docking Simulation , Molecular Structure , Nervous System Diseases/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
4.
Eur J Med Chem ; 190: 112090, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32018096

ABSTRACT

New multi-target indole and naphthalene derivatives containing the oxadiazolone scaffold as a bioisostere of the melatonin acetamido group have been developed. The novel compounds were characterized at melatonin receptors MT1R and MT2R, quinone reductase 2 (QR2), lipoxygenase-5 (LOX-5), and monoamine oxidases (MAO-A and MAO-B), and also as radical scavengers. We found that selectivity within the oxadiazolone series can be modulated by modifying the side chain functionality and co-planarity with the indole or naphthalene ring. In phenotypic assays, several oxadiazolone-based derivatives induced signalling mediated by the transcription factor NRF2 and promoted the maturation of neural stem-cells into a neuronal phenotype. Activation of NRF2 could be due to the binding of indole derivatives to KEAP1, as deduced from surface plasmon resonance (SPR) experiments. Molecular modelling studies using the crystal structures of QR2 and the KEAP1 Kelch-domain, as well as the recently described X-ray free-electron laser (XFEL) structures of chimeric MT1R and MT2R, provided a rationale for the experimental data and afforded valuable insights for future drug design endeavours.


Subject(s)
NF-E2-Related Factor 2/agonists , Neurogenesis/drug effects , Oxadiazoles/pharmacology , Quinone Reductases/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/metabolism , Antioxidants/pharmacology , CHO Cells , Cell Line, Tumor , Cricetulus , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/metabolism , Lipoxygenase Inhibitors/pharmacology , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/metabolism , Monoamine Oxidase Inhibitors/pharmacology , NF-E2-Related Factor 2/metabolism , Naphthalenes/chemical synthesis , Naphthalenes/metabolism , Naphthalenes/pharmacology , Oxadiazoles/chemical synthesis , Oxadiazoles/metabolism , Protein Binding
5.
J Enzyme Inhib Med Chem ; 34(1): 712-727, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31852270

ABSTRACT

The design of multi-target directed ligands (MTDLs) is a valid approach for obtaining effective drugs for complex pathologies. MTDLs that combine neuro-repair properties and block the first steps of neurotoxic cascades could be the so long wanted remedies to treat neurodegenerative diseases (NDs). By linking two privileged scaffolds with well-known activities in ND-targets, the flavonoid and the N,N-dibenzyl(N-methyl)amine (DBMA) fragments, new CNS-permeable flavonoid - DBMA hybrids (1-13) were obtained. They were subjected to biological evaluation in a battery of targets involved in Alzheimer's disease (AD) and other NDs, namely human cholinesterases (hAChE/hBuChE), ß-secretase (hBACE-1), monoamine oxidases (hMAO-A/B), lipoxygenase-5 (hLOX-5) and sigma receptors (σ1R/σ2R). After a funnel-type screening, 6,7-dimethoxychromone - DBMA (6) was highlighted due to its neurogenic properties and an interesting MTD-profile in hAChE, hLOX-5, hBACE-1 and σ1R. Molecular dynamic simulations showed the most relevant drug-protein interactions of hybrid 6, which could synergistically contribute to neuronal regeneration and block neurodegeneration.


Subject(s)
Alzheimer Disease/drug therapy , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Methylamines/pharmacology , Nerve Regeneration/drug effects , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Arachidonate 5-Lipoxygenase/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Humans , Male , Methylamines/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Molecular Structure , Monoamine Oxidase/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry
6.
Eur J Med Chem ; 156: 534-553, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30025348

ABSTRACT

In this work we describe neurogenic and neuroprotective donepezil-flavonoid hybrids (DFHs), exhibiting nanomolar affinities for the sigma-1 receptor (σ1R) and inhibition of key enzymes in Alzheimer's disease (AD), such as acetylcholinesterase (AChE), 5-lipoxygenase (5-LOX), and monoamine oxidases (MAOs). In general, new compounds scavenge free radical species, are predicted to be brain-permeable, and protect neuronal cells against mitochondrial oxidative stress. N-(2-(1-Benzylpiperidin-4-yl)ethyl)-6,7-dimethoxy-4-oxo-4H-chromene-2-carboxamide (18) is highlighted due to its interesting biological profile in σ1R, AChE, 5-LOX, MAO-A and MAO-B. In phenotypic assays, it protects a neuronal cell line against mitochondrial oxidative stress and promotes maturation of neural stem cells into a neuronal phenotype, which could contribute to the reparation of neuronal tissues. Molecular modelling studies of 18 in AChE, 5-LOX and σ1R revealed the main interactions with these proteins, which will be further exploited in the optimization of new, more efficient DFHs.


Subject(s)
Alzheimer Disease/enzymology , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Indans/pharmacology , Neurogenesis/drug effects , Neuroprotective Agents/pharmacology , Piperidines/pharmacology , Receptors, sigma/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cell Line , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Donepezil , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Humans , Indans/chemistry , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Male , Mice, Inbred BALB C , Models, Molecular , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/chemistry , Piperidines/chemistry , Sigma-1 Receptor
7.
ChemMedChem ; 12(7): 537-545, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28218498

ABSTRACT

N-Methyl-d-aspartate (NMDA) receptors are fundamental for the normal function of the central nervous system (CNS), and play an important role in memory and learning. Over-activation of these receptors leads to neuronal loss associated with major neurological disorders such as Parkinson's disease, Alzheimer's disease, schizophrenia, and epilepsy. In this study, 22 novel enantiopure bicyclic lactams were designed, synthesized, and evaluated as NMDA receptor antagonists. Most of the new compounds displayed NMDA receptor antagonism, and the most promising compound showed an IC50 value on the same order of magnitude as that of memantine, an NMDA receptor antagonist in clinical use for the treatment of Alzheimer's disease. Further biological evaluation indicated that this compound is brain permeable (determined by an in vitro assay) and non-hepatotoxic. All these results indicate that (3S,7aS)-7a-(4-chlorophenyl)-3-(4-hydroxybenzyl)tetrahydropyrrolo[2,1-b]oxazol-5(6H)-one (compound 5 b) is a potential candidate for the treatment of pathologies associated with the over-activation of NMDA receptors.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Lactams/chemistry , Neuroprotective Agents/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Alzheimer Disease/drug therapy , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Hep G2 Cells , Humans , Lactams/therapeutic use , Lactams/toxicity , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/toxicity , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
8.
Molecules ; 21(9)2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27598108

ABSTRACT

The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/ß-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).


Subject(s)
Neural Stem Cells/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurogenesis/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/therapeutic use , Animals , Humans , Neural Stem Cells/pathology , Neurodegenerative Diseases/pathology
9.
Eur J Med Chem ; 121: 376-386, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27267007

ABSTRACT

Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular targets in Alzheimer's disease, such as cholinesterases (hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids derived from umbellic - NBP (8), caffeic - NBP (9), and ferulic - DBMA (12) displayed balanced biological profiles, with IC50s in the low-micromolar and submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Moreover, the caffeic - NBP hybrid 9 is able to improve the differentiation of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro.


Subject(s)
Alzheimer Disease/drug therapy , Amines/chemistry , Cholinesterases/metabolism , Molecular Targeted Therapy , Monoamine Oxidase/metabolism , Piperidines/chemistry , Piperidines/pharmacology , Alzheimer Disease/metabolism , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Cell Line, Tumor , Drug Design , Humans , Male , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Piperidines/therapeutic use
10.
Eur J Med Chem ; 103: 370-3, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26367450

ABSTRACT

The design and synthesis of a series of new fluorescent coumarin-containing melatonin analogues is presented. The combination of high-binding affinities for human melatonergic receptors (h-MT1R and h-MT2R) and fluorescent properties, derived from the inclusion of melatonin pharmacophoric elements in the coumarin scaffold, yielded suitable candidates for the development of MT1R and MT2R fluorescent probes for imaging in biological media.


Subject(s)
Coumarins/chemistry , Drug Design , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Melatonin/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Dose-Response Relationship, Drug , Fluorescent Dyes/analysis , Humans , Ligands , Melatonin/metabolism , Molecular Imaging/methods , Molecular Structure , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT2/chemistry , Structure-Activity Relationship
11.
J Med Chem ; 58(12): 4998-5014, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26023814

ABSTRACT

Herein we present a new family of melatonin-based compounds, in which the acetamido group of melatonin has been bioisosterically replaced by a series of reversed amides and azoles, such as oxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole, as well as other related five-membered heterocycles, namely, 1,3,4-oxadiazol(thio)ones, 1,3,4-triazol(thio)ones, and an 1,3,4-thiadiazole. New compounds were fully characterized at melatonin receptors (MT1R and MT2R), and results were rationalized by superimposition studies of their structures to the bioactive conformation of melatonin. We also found that several of these melatonin-based compounds promoted differentiation of rat neural stem cells to a neuronal phenotype in vitro, in some cases to a higher extent than melatonin. This unique profile constitutes the starting point for further pharmacological studies to assess the mechanistic pathways and the relevance of neurogenesis induced by melatonin-related structures.


Subject(s)
Melatonin/analogs & derivatives , Melatonin/pharmacology , Neurogenesis/drug effects , Receptors, Melatonin/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Humans , Male , Models, Molecular , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Rats , Rats, Wistar , Receptors, Melatonin/agonists , Receptors, Melatonin/antagonists & inhibitors , Thiadiazoles/chemistry , Thiadiazoles/pharmacology
12.
ChemMedChem ; 10(3): 523-39, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25537267

ABSTRACT

Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA-blood-brain barrier (BBB) analysis of new tacrine-ferulic acid hybrids (TFAHs). We identified (E)-3-(hydroxy-3-methoxyphenyl)-N-{8[(7-methoxy-1,2,3,4-tetrahydroacridin-9-yl)amino]octyl}-N-[2-(naphthalen-2-ylamino)2-oxoethyl]acrylamide (TFAH 10 n) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50 =68.2 nM), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good ß-amyloid (Aß) anti-aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA-BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 µM), affording good neuroprotection against toxic insults such as Aß1-40 , Aß1-42 , H2 O2 , and oligomycin A/rotenone on SH-SY5Y cells, at 1 µM. The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Tacrine/chemistry , Tacrine/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacokinetics , Coumaric Acids/chemical synthesis , Coumaric Acids/pharmacokinetics , Drug Discovery , Hep G2 Cells , Humans , Models, Molecular , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Rats, Wistar , Tacrine/chemical synthesis , Tacrine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...