Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38098135

ABSTRACT

Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.


Subject(s)
Frankia , Magnoliopsida , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition
2.
Article in English | MEDLINE | ID: mdl-37351943

ABSTRACT

Frankia strain Ag45/Mut15T was isolated from a root nodule of Alnus glutinosa growing in a swamp at lake Grossensee, Germany. The strain forms root nodules on A. glutinosa, in which it produces hyphae and clusters of N2-fixing vesicles. N2-fixing vesicles are also produced in nitrogen-free growth medium, in addition to hyphae and sporangia. The whole-cell hydrolysates of strain Ag45/Mut15T contained meso-diaminopimelic acid in the peptidoglycan and ribose, xylose, mannose, glucose, galactose and a trace of rhamnose as cell-wall sugars. The major polar lipids were phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and glyco-phospholipid. The predominant (>20 %) menaquinones were MK-9(H6) and MK-9(H4). The major fatty acid profile (>10 %) consisted of iso-C16:0, C17 : 1 ω8c and C17 : 0. Pairwise 16S rRNA gene distances showed that strain Ag45/Mut15T was most closely related to Frankia torreyi CpI1T and Candidatus Frankia nodulisporulans with 16S rRNA gene similarity values of 0.001335 substitutions per site. An multilocus sequence analysis phylogeny based on atpD, dnaA, ftsZ, pgk and rpoB amino acid sequences positioned the strain within cluster 1 of Alnus- and Myrica-nodulating species, close to Candidatus F. nodulisporulans AgTrST and F. canadensis ARgP5T. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the studied strain Ag45/Mut15T and all validly named Frankia species were below the defined threshold for prokaryotic species demarcation. Candidatus F. nodulisporulans AgTrST, which cannot be cultivated in vitro, was found to be the closest phylogenetic neighbour to strain strain Ag45/Mut15T with dDDH and ANI values of 61.8 and 97 %, respectively. Strain Ag45/Mut15T was not able to sporulate in nodule tissues like strain AgTrST.Phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain Ag45/Mut15T (=DSM 114737T=LMG 326O1T) to a novel species, with Ag45/Mut15T as type strain, for which the name Frankia umida sp. nov. is proposed.


Subject(s)
Alnus , Frankia , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Phospholipids/chemistry , Vitamin K 2/chemistry
3.
Genes (Basel) ; 14(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36833457

ABSTRACT

The present study aimed to use comparative genomics to explore the relationships between Frankia and actinorhizal plants using a data set made of 33 Frankia genomes. The determinants of host specificity were first explored for "Alnus-infective strains" (i.e., Frankia strains belonging to Cluster Ia). Several genes were specifically found in these strains, including an agmatine deiminase which could possibly be involved in various functions as access to nitrogen sources, nodule organogenesis or plant defense. Within "Alnus-infective strains", Sp+ Frankia genomes were compared to Sp- genomes in order to elucidate the narrower host specificity of Sp+ strains (i.e., Sp+ strains being capable of in planta sporulation, unlike Sp- strains). A total of 88 protein families were lost in the Sp+ genomes. The lost genes were related to saprophytic life (transcriptional factors, transmembrane and secreted proteins), reinforcing the proposed status of Sp+ as obligatory symbiont. The Sp+ genomes were also characterized by a loss of genetic and functional paralogs, highlighting a reduction in functional redundancy (e.g., hup genes) or a possible loss of function related to a saprophytic lifestyle (e.g., genes involved in gas vesicle formation or recycling of nutrients).


Subject(s)
Alnus , Frankia , Symbiosis/genetics , Frankia/genetics , Genomics
4.
Syst Appl Microbiol ; 43(6): 126134, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33059155

ABSTRACT

We describe a new Frankia species, for three non-isolated strains obtained from Alnus glutinosa in France and Sweden, respectively. These strains can nodulate several Alnus species (A. glutinosa, A. incana, A. alnobetula), they form hyphae, vesicles and sporangia in the root nodule cortex but have resisted all attempts at isolation in pure culture. Their genomes have been sequenced, they are significantly smaller than those of other Alnus-infective species (5Mb instead of 7.5Mb) and are very closely related to one another (ANI of 100%). The name Candidatus Frankia nodulisporulans is proposed. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and draft genome sequences reported in this study for AgTrS, AgUmASt1 and AgUmASH1 are MT023539/LR778176/LR778180 and NZ_CADCWS000000000.1/CADDZU010000001/CADDZW010000001, respectively.


Subject(s)
Alnus/microbiology , Frankia/classification , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , France , Frankia/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sweden
5.
Int J Syst Evol Microbiol ; 70(10): 5453-5459, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32910750

ABSTRACT

The members of the genus Frankia are, with a few exceptions, a group of nitrogen-fixing symbiotic actinobacteria that nodulate mostly woody dicotyledonous plants belonging to three orders, eight families and 23 genera of pioneer dicots. These bacteria have been characterized phylogenetically and grouped into four molecular clusters. One of the clusters, cluster 1 contains strains that induce nodules on Alnus spp. (Betulaceae), Myrica spp., Morella spp. and Comptonia spp. (Myricaceae) that have global distributions. Some of these strains produce not only hyphae and vesicles, as other cluster 1 strains do, but also numerous sporangia in their host symbiotic tissues, hence their phenotype being described as spore-positive (Sp+). While Sp+ strains have resisted repeated attempts at cultivation, their genomes have recently been characterized and found to be different from those of all described species, being markedly smaller than their phylogenetic neighbours. We thus hereby propose to create a 'Candidatus Frankia alpina' species for some strains present in nodules of Alnus alnobetula and A. incana that grow in alpine environments at high altitudes or in subarctic environments at high latitudes.


Subject(s)
Alnus/microbiology , Frankia/classification , Nitrogen Fixation , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Magnoliopsida/microbiology , Symbiosis
6.
Mol Plant Microbe Interact ; 33(3): 499-508, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916486

ABSTRACT

Symbiosis established between actinorhizal plants and Frankia spp., which are nitrogen-fixing actinobacteria, promotes nodule organogenesis, the site of metabolic exchange. The present study aimed to identify amino acid markers involved in Frankia-Alnus interactions by comparing nodules and associated roots from field and greenhouse samples. Our results revealed a high level of citrulline in all samples, followed by arginine (Arg), aspartate (Asp), glutamate (Glu), γ-amino-n-butyric acid (GABA), and alanine (Ala). Interestingly, the field metabolome approach highlighted more contrasted amino acid patterns between nodules and roots compared with greenhouse samples. Indeed, 12 amino acids had a mean relative abundance significantly different between field nodule and root samples, against only four amino acids in greenhouse samples, underlining the importance of developing "ecometabolome" approaches. In order to monitor the effects on Frankia cells (respiration and nitrogen fixation activities) of amino acid with an abundance pattern evocative of a role in symbiosis, in-vitro assays were performed by supplementing them in nitrogen-free cultures. Amino acids had three types of effects: i) those used by Frankia as nitrogen source (Glu, Gln, Asp), ii) amino acids stimulating both nitrogen fixation and respiration (e.g., Cit, GABA, Ala, valine, Asn), and iii) amino acids triggering a toxic effect (Arg, histidine). In this paper, a N-metabolic model was proposed to discuss how the host plant and bacteria modulate amino acids contents in nodules, leading to a fine regulation sustaining high bacterial nitrogen fixation.


Subject(s)
Alnus/microbiology , Amino Acids/analysis , Frankia/metabolism , Nitrogen Fixation , Symbiosis , Root Nodules, Plant/microbiology
7.
J Genomics ; 7: 50-55, 2019.
Article in English | MEDLINE | ID: mdl-31588247

ABSTRACT

Actinobacteria from genus Frankia are able to form symbiotic associations with actinorhizal plants including alders. Among them, Sp+ strains are characterized by their ability to differentiate numerous sporangia inside host plant cells (unlike "Sp-" strains unable of in-planta sporulation). Here, we report the first genome sequences of three unisolated Sp+ strains: AgTrS, AiOr and AvVan obtained from Alnus glutinosa, A. incana and A. alnobetula (previously known as viridis), respectively (with genome completeness estimated at more than 98%). They represent new Frankia species based on Average Nucleotide Identity (ANI) calculations, and the smallest Alnus-infective Frankia genomes so far sequenced (~5 Mbp), with 5,178, 6,192 and 5,751 candidate protein-encoding genes for AgTrS, AiOr and AvVan, respectively.

8.
Res Microbiol ; 170(4-5): 202-213, 2019.
Article in English | MEDLINE | ID: mdl-31018159

ABSTRACT

Sporulation is a microbial adaptive strategy to resist inhospitable conditions for vegetative growth and to disperse to colonise more favourable environments. This microbial trait is widespread in Actinobacteria. Among them, Frankia strains are able to differentiate sporangia in pure culture, while others can sporulate even when in symbiosis with sporulation occurring within host cells. The molecular determinants controlling Frankia sporulation have not been yet described. In order to highlight, for the first time, the molecular players potentially involved in Frankia sporulation, we conducted (i) a comparison of protein contents between Frankia spores and hyphae and (ii) a comparative genomic analysis of Frankia proteomes with sporulating and non-sporulating Actinobacteria. Among the main results, glycogen-metabolism related proteins, as well as oxidative stress response and protease-like proteins were overdetected in hyphae, recalling lytic processes that allow Streptomyces cells to erect sporogenic hyphae. Several genes encoding transcriptional regulators, including GntR-like, appeared up-regulated in spores, as well as tyrosinase, suggesting their potential role in mature spore metabolism. Finally, our results highlighted new proteins potentially involved in Frankia sporulation, including a pyrophosphate-energized proton pump and YaaT, described as involved in the phosphorelay allowing sporulation in Bacillus subtilis, leading us to discuss the role of a phosphorelay in Frankia sporulation.


Subject(s)
Bacterial Proteins/metabolism , Frankia/genetics , Frankia/physiology , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , Genome, Bacterial/genetics , Monophenol Monooxygenase/genetics , Proteogenomics , Proteome/genetics , Proteome/metabolism , Stress, Physiological/genetics
9.
Int J Syst Evol Microbiol ; 68(9): 3001-3011, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30059001

ABSTRACT

Strain ARgP5T, an actinobacterium isolated from a root nodule present on an Alnus incana subspecies rugosa shrub growing in Quebec City, Canada, was the subject of polyphasic taxonomic studies to clarify its status within the genus Frankia. 16S rRNA gene sequence similarities and ANI values between ARgP5T and type strains of species of the genus Frankiawith validly published names were 98.8 and 82 % or less, respectively. The in silico DNA G+C content was 72.4 mol%. ARgP5T is characterised by the presence of meso-A2pm, galactose, glucose, mannose, rhamnose (trace), ribose and xylose as whole-organism hydrolysates; MK-9(H8) as predominant menaquinone; diphosphatidylglycerol, phosphatidylinositol and phosphatidylglycerol as polar lipids and iso-C16 : 0 and C17 : 1ω8c as major fatty acids. The proteomic results confirmed the distinct position of ARgP5T from its closest neighbours in Frankiacluster 1. ARgP5T was found to be infective on two alder (Alnus glutinosa and Alnusalnobetula subsp. crispa) and on one bayberry (Morella pensylvanica) species and to fix nitrogen in symbiosis and in pure culture. On the basis of phylogenetic (16S rRNA gene sequence), genomic, proteomic and phenotypic results, strain ARgP5T (=DSM 45898=CECT 9033) is considered to represent a novel species within the genus Frankia for which the name Frankia canadensis sp. nov., is proposed.


Subject(s)
Alnus/microbiology , Frankia/classification , Phylogeny , Plant Roots/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Frankia/genetics , Frankia/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , Quebec , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
10.
Syst Appl Microbiol ; 41(4): 311-323, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29653822

ABSTRACT

Diazotrophic Actinobacteria of the genus Frankia represent a challenge to classical bacterial taxonomy as they include many unculturable strains. As a consequence, we still have a poor understanding of their diversity, evolution and biogeography. In this study, a Multi-Locus Sequence Analysis (MLSA) using atpD, dnaA, ftsZ, pgk, and rpoB loci was done on a large set of cultured and uncultured strains, compared to 16S rRNA and correlated to Average Nucleotide Identity (ANI) from available Frankia genomes. MLSA provided a robust resolution of Frankia genus phylogeny and clarified the status of unresolved species and complex of species. The robustness of single-gene topologies and their congruence with the MLSA tree were tested. Lateral Gene Transfers (LGT) were few and scattered, suggesting they had no impact on the concatenate topology. The pgk marker - providing the longest sequence, highest mean genetic divergence and least occurrence of LGT - was used to survey an unequalled number of Alnus-infective Frankia - mainly uncultured strains from a broad range of host-species and geographic origins. This marker allowed reliable Single-Locus Strain Typing (SLST) below the species level, revealed an undiscovered taxonomical diversity, and highlighted the effect of cultivation, sporulation phenotype and host plant species on symbiont richness, diversity and phylogeny.


Subject(s)
Alnus/microbiology , Frankia/classification , Frankia/genetics , Myricaceae/microbiology , Root Nodules, Plant/microbiology , Amplified Fragment Length Polymorphism Analysis , Base Sequence , DNA, Bacterial/genetics , Frankia/isolation & purification , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
11.
Microbes Environ ; 31(1): 11-8, 2016.
Article in English | MEDLINE | ID: mdl-26726131

ABSTRACT

Frankia Sp+ strains maintain their ability to sporulate in symbiosis with actinorhizal plants, producing abundant sporangia inside host plant cells, in contrast to Sp- strains, which are unable to perform in-planta sporulation. We herein examined the role of in-planta sporulation in Frankia infectivity and competitiveness for root infection. Fifteen strains belonging to different Sp+ and Sp- phylogenetic lineages were inoculated on seedlings of Alnus glutinosa (Ag) and A. incana (Ai). Strain competitiveness was investigated by performing Sp-/Sp+ co-inoculations. Plant inoculations were standardized using crushed nodules obtained under laboratory-controlled conditions (same plant species, age, and environmental factors). Specific oligonucleotide primers were developed to identify Frankia Sp+ and/or Sp- strains in the resulting nodules. Single inoculation experiments showed that (i) infectivity by Sp+ strains was significantly greater than that by Sp- strains, (ii) genetically divergent Sp+ strains exhibited different infective abilities, and (iii) Sp+ and Sp- strains showed different host preferences according to the origin (host species) of the inocula. Co-inoculations of Sp+ and Sp- strains revealed the greater competitiveness of Sp+ strains (98.3 to 100% of Sp+ nodules, with up to 15.6% nodules containing both Sp+ and Sp- strains). The results of the present study highlight differences in Sp+/Sp- strain ecological behaviors and provide new insights to strengthen the obligate symbiont hypothesis for Sp+ strains.


Subject(s)
Frankia/growth & development , Plant Roots/microbiology , Spores, Bacterial/growth & development , Alnus/microbiology , Frankia/physiology , Host Specificity , Symbiosis
12.
Environ Microbiol ; 17(9): 3125-38, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25335453

ABSTRACT

Two major types of Frankia strains are usually recognized, based on the ability to sporulate in-planta: spore-positive (Sp+) and spore-negative (Sp-). We carried out a study of Sp+ and Sp- Frankia strains based on nodules collected on Alnus glutinosa, Alnus incana and Alnus viridis. The nodules were phenotyped using improved histology methods, and endophytic Frankia strain genotype was determined using a multilocus sequence analysis approach. An additional sampling was done to assess the relation between Sp+ phenotype frequency and genetic diversity of Frankia strains at the alder stand scale. Our results revealed that (i) Sp+ and Sp- Alnus-infective Frankia strains are genetically different even when sampled from the same alder stand and the same host-plant species; (ii) there are at least two distinct phylogenetic lineages of Sp+ Frankia that cluster according to the host-plant species and without regard of geographic distance and (iii) genetic diversity of Sp+ strains is very low at the alder stand scale compared with Sp- strains. Difference in evolutionary history and genetic diversity between Sp+ and Sp- Frankia allows us to discuss the possible ecological role of in-planta sporulation.


Subject(s)
Alnus/microbiology , Frankia/classification , Spores, Bacterial/genetics , Frankia/genetics , Genetic Variation/genetics , Genotype , Multilocus Sequence Typing , Phenotype , Phylogeny , Root Nodules, Plant/microbiology , Soil Microbiology
13.
Microb Ecol ; 62(1): 69-79, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21584756

ABSTRACT

Bacteria inhabiting crystalline rocks from two terrestrial Icelandic volcanic lava flows of similar age and from the same geographical region, but differing in porosity and mineralogy, were characterised. Microarray (PhyloChip) and clone library analysis of 16S rRNA genes revealed the presence of a diverse assemblage of bacteria in each lava flow. Both methods suggested a more diverse community at the Dómadalshraun site (rhyolitic/andesitic lava flow) than that present at the Hnausahraun site (basaltic lava flow). Proteobacteria dominated the clone library at the Dómadalshraun site, while Acidobacteria was the most abundant phylum in the Hnausahraun site. Although analysis of similarities of denaturing gradient gel electrophoresis profiles suggested a strong correlation of community structure with mineralogy, rock porosity may also play an important role in shaping the bacterial community in crystalline volcanic rocks. Clone sequences were most similar to uncultured microorganisms, mainly from soil environments. Of these, Antarctic soils and temperate rhizosphere soils were prominent, as were clones retrieved from Hawaiian and Andean volcanic soils. The novel diversity of these Icelandic microbial communities was supported by the finding that up to 46% of clones displayed <85% sequence identities to sequences currently deposited in the RDP database.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Geologic Sediments/microbiology , Volcanic Eruptions/analysis , Bacteria/classification , Bacteria/genetics , Geologic Sediments/chemistry , Iceland , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...