Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 7: 85, 2016.
Article in English | MEDLINE | ID: mdl-26904057

ABSTRACT

Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

2.
Recent Pat Anticancer Drug Discov ; 5(2): 88-98, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19941463

ABSTRACT

Vacuolar-type ATPases are multicomponent proton pumps involved in the acidification of single membrane intracellular compartments such as endosomes and lysosomes. They couple the hydrolysis of ATP to the translocation of one to two protons across the membrane. Acidification of the lumen of single membrane organelles is a necessary factor for the correct traffic of membranes and cargo to and from the different internal compartments of a cell. Also, V-ATPases are involved in regulation of pH at the cytosol and, possibly, extracellular milieu. The inhibition of V-ATPases has been shown to induce apoptosis and cell cycle arrest in tumour cells and, therefore, chemicals that behave as inhibitors of this kind of proton pumps have been proposed as putative treatment agents against cancer and many have been patented as such. The compounds filed in patents fall into five major types: plecomacrolides, benzolactone enamides, archazolids, chondropsins and indoles. All these have proved to be apoptosis inducers in cell culture and many to be able to reduce xenograft tumor growth in murine models. The present review will summarize their general structure, origin and mechanisms of action and put them in relation to the patents registered so far for the treatment of cancer.


Subject(s)
Acids/metabolism , Cell Proliferation/drug effects , Neoplasms/drug therapy , Organelles/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/physiology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods , Humans , Hydrogen-Ion Concentration , Models, Biological , Patents as Topic , Vacuolar Proton-Translocating ATPases/metabolism
3.
Curr Biol ; 19(5): 359-68, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19230666

ABSTRACT

BACKGROUND: The circadian clock controls several important processes in plant development, including the phase transition from vegetative growth to flowering. In Arabidopsis thaliana, the circadian-regulated gene CONSTANS (CO) plays a central role in the photoperiodic control of the floral transition, one of the most conserved flowering responses among distantly related plants. CO is a member of a plant-specific family of transcription factors, and when it arose during the evolution of higher plants is unclear. RESULTS: A CO homologous gene present in the genome of the unicellular green alga Chlamydomonas reinhardtii (CrCO) can complement the Arabidopsis co mutation and promote early flowering in wild-type plants when expressed under different promoters. Transcript levels of FLOWERING LOCUS T (FT), the main target of CO, are increased in CrCO transgenic plants in a way similar to those in plants overexpressing CO. In the microalga, expression of CrCO is influenced by day length and the circadian clock, being higher in short photoperiods. Reduction of CrCO expression in Chlamydomonas by RNA interference induces defects in culture growth, whereas algae induced to express high levels of CrCO show alterations in several circadian output processes, such as starch accumulation and the onset of expression of genes that regulate the cell cycle. CONCLUSIONS: The effects observed may reflect a conserved role for CrCO in the coordination of processes regulated by photoperiod and the circadian clock. Our data indicate that CO orthologs probably represent ancient regulators of photoperiod-dependent events and that these regulators arose early in the evolutionary lineage that gave rise to flowering plants.


Subject(s)
Arabidopsis Proteins/metabolism , Biological Evolution , Chlamydomonas reinhardtii/physiology , DNA-Binding Proteins/metabolism , Photoperiod , Protozoan Proteins/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Animals , Arabidopsis/anatomy & histology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Biological Clocks/physiology , Chlamydomonas reinhardtii/genetics , Circadian Rhythm/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation , Multigene Family , Mutation , Plants, Genetically Modified , Protozoan Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...