ABSTRACT
The dynamics of epidemiological phenomena associated to infectious diseases have long been modelled taking different approaches. However, recent pandemic events exposed many areas of opportunity to improve the existing models. We develop a stochastic model based on the idea that transitions between epidemiological stages are alike sampling processes that may involve more than one subset of the population or may be mostly dependent on time intervals defined by pathological or clinical criteria. We apply the model to simulate epidemics, analyse the final distribution of the case fatality ratio, and define a basic reproductive number to determine the existence of a probabilistic phase transition for the dynamics. The resulting modelling scheme is robust, easy to implement, and can readily lend itself for extensions aimed at answering questions that emerge from close examination of data trends, such as those emerging from the COVID-19 pandemic, and other infectious diseases.
Subject(s)
COVID-19 , Communicable Diseases , Epidemics , Humans , Pandemics , COVID-19/epidemiology , Communicable Diseases/epidemiology , Basic Reproduction NumberABSTRACT
A general formulation for both passive and active transmembrane transport is derived from basic thermodynamical principles. The derivation takes into account the energy required for the motion of molecules across membranes and includes the possibility of modeling asymmetric flow. Transmembrane currents can then be described by the general model in the case of electrogenic flow. As it is desirable in new models, it is possible to derive other well-known expressions for transmembrane currents as particular cases of the general formulation. For instance, the conductance-based formulation for current turns out to be a linear approximation of the general formula for current. Also, under suitable assumptions, other formulas for current based on electrodiffusion, like the constant field approximation by Goldman, can be recovered from the general formulation. The applicability of the general formulations is illustrated first with fits to existing data, and after, with models of transmembrane potential dynamics for pacemaking cardiocytes and neurons. The general formulations presented here provide a common ground for the biophysical study of physiological phenomena that depend on transmembrane transport.
ABSTRACT
INTRODUCTION: Mathematical models and field data suggest that human mobility is an important driver for Dengue virus transmission. Nonetheless little is known on this matter due the lack of instruments for precise mobility quantification and study design difficulties. MATERIALS AND METHODS: We carried out a cohort-nested, case-control study with 126 individuals (42 cases, 42 intradomestic controls and 42 population controls) with the goal of describing human mobility patterns of recently Dengue virus-infected subjects, and comparing them with those of non-infected subjects living in an urban endemic locality. Mobility was quantified using a GPS-data logger registering waypoints at 60-second intervals for a minimum of 15 natural days. RESULTS: Although absolute displacement was highly biased towards the intradomestic and peridomestic areas, occasional displacements exceeding a 100-Km radius from the center of the studied locality were recorded for all three study groups and individual displacements were recorded traveling across six states from central Mexico. Additionally, cases had a larger number of visits out of the municipality´s administrative limits when compared to intradomestic controls (cases: 10.4 versus intradomestic controls: 2.9, p = 0.0282). We were able to identify extradomestic places within and out of the locality that were independently visited by apparently non-related infected subjects, consistent with houses, working and leisure places. CONCLUSIONS: Results of this study show that human mobility in a small urban setting exceeded that considered by local health authority's administrative limits, and was different between recently infected and non-infected subjects living in the same household. These observations provide important insights about the role that human mobility may have in Dengue virus transmission and persistence across endemic geographic areas that need to be taken into account when planning preventive and control measures. Finally, these results are a valuable reference when setting the parameters for future mathematical modeling studies.
Subject(s)
Dengue/transmission , Models, Theoretical , Travel , Adolescent , Adult , Case-Control Studies , Cities , Female , Humans , Male , Mexico , Middle Aged , Urban Population , Young AdultABSTRACT
Influenza outbreaks have been of relatively limited historical interest in Mexico. The 2009 influenza pandemic not only changed Mexico's health priorities but also brought to the forefront some of the strengths and weaknesses of Mexico's epidemiological surveillance and public health system. A year later, Mexico's data show an epidemic pattern characterized by three "waves''. The reasons this three-wave patterns are theoretically investigated via models that incorporate Mexico's general trends of land transportation, public health measures, and the regular opening and closing of schools during 2009. The role of vaccination is also studied taking into account delays in access and limitations in the total and daily numbers of vaccines available. The research in this article supports the view that the three epidemic "waves" are the result of the synergistic interactions of three factors: regional movement patterns of Mexicans, the impact and effectiveness of dramatic social distancing measures imposed during the first outbreak, and the summer release of school children followed by their subsequent return to classes in the fall. The three "waves" cannot be explained by the transportation patterns alone but only through the combination of transport patterns and changes in contact rates due to the use of explicit or scheduled social distancing measures. The research identifies possible vaccination schemes that account for the school calendar and whose effectiveness are enhanced by social distancing measures. The limited impact of the late arrival of the vaccine is also analyzed.