Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 158: 107745, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31445017

ABSTRACT

Non-competitive N-methyl-d-aspartate receptor antagonists mimic schizophrenia symptoms and produce immediate and persistent antidepressant effects. We investigated the effects of ketamine and phencyclidine (PCP) on thalamo-cortical network activity in awake, freely-moving male Wistar rats to gain new insight into the neuronal populations and brain circuits involved in the effects of NMDA-R antagonists. Single unit and local field potential (LFP) recordings were conducted in mediodorsal/centromedial thalamus and in medial prefrontal cortex (mPFC) using microelectrode arrays. Ketamine and PCP moderately increased the discharge rates of principal neurons in both areas while not attenuating the discharge of mPFC GABAergic interneurons. They also strongly affected LFP activity, reducing beta power and increasing that of gamma and high-frequency oscillation bands. These effects were short-lasting following the rapid pharmacokinetic profile of the drugs, and consequently were not present at 24 h after ketamine administration. The temporal profile of both drugs was remarkably different, with ketamine effects peaking earlier than PCP effects. Although this study is compatible with the glutamate hypothesis for fast-acting antidepressant action, it does not support a local disinhibition mechanism as the source for the increased pyramidal neuron activity in mPFC. The short-lasting increase in thalamo-cortical activity is likely associated with the rapid psychotomimetic action of both agents but could also be part of a cascade of events ultimately leading to the persistent antidepressant effects of ketamine. Changes in spectral contents of high-frequency bands by the drugs show potential as translational biomarkers for target engagement of NMDA-R modulators.


Subject(s)
Action Potentials/drug effects , Excitatory Amino Acid Antagonists/pharmacology , GABAergic Neurons/drug effects , Intralaminar Thalamic Nuclei/drug effects , Ketamine/pharmacology , Mediodorsal Thalamic Nucleus/drug effects , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Animals , GABAergic Neurons/metabolism , Interneurons/drug effects , Interneurons/metabolism , Intralaminar Thalamic Nuclei/cytology , Intralaminar Thalamic Nuclei/metabolism , Mediodorsal Thalamic Nucleus/cytology , Mediodorsal Thalamic Nucleus/metabolism , Neurons/drug effects , Neurons/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Thalamus , Wakefulness
2.
Eur J Neurosci ; 50(2): 1948-1971, 2019 07.
Article in English | MEDLINE | ID: mdl-30762918

ABSTRACT

Quantitative electroencephalography from freely moving rats is commonly used as a translational tool for predicting drug-effects in humans. We hypothesized that drug-effects may be expressed differently depending on whether the rat is in active locomotion or sitting still during recording sessions, and proposed automatic state-detection as a viable tool for estimating drug-effects free of hypo-/hyperlocomotion-induced effects. We aimed at developing a fully automatic and validated method for detecting two behavioural states: active and inactive, in one-second intervals and to use the method for evaluating ketamine, DOI, d-cycloserine, d-amphetamine, and diazepam effects specifically within each state. The developed state-detector attained high precision with more than 90% of the detected time correctly classified, and multiple differences between the two detected states were discovered. Ketamine-induced delta activity was found specifically related to locomotion. Ketamine and DOI suppressed theta and beta oscillations exclusively during inactivity. Characteristic gamma and high-frequency oscillations (HFO) enhancements of the NMDAR and 5HT2A modulators, speculated associated with locomotion, were profound and often largest during the inactive state. State-specific analyses, theoretically eliminating biases from altered occurrence of locomotion, revealed only few effects of d-amphetamine and diazepam. Overall, drug-effects were most abundant in the inactive state. In conclusion, this new validated and automatic locomotion state-detection method enables fast and reliable state-specific analysis facilitating discovery of state-dependent drug-effects and control for altered occurrence of locomotion. This may ultimately lead to better cross-species translation of electrophysiological effects of pharmacological modulations.


Subject(s)
Behavior, Animal/drug effects , Brain Waves/drug effects , Central Nervous System Agents/pharmacology , Cerebral Cortex/drug effects , Electrocorticography/drug effects , Locomotion/drug effects , Motor Activity/drug effects , Amphetamines/pharmacology , Animals , Cycloserine/pharmacology , Dextroamphetamine/pharmacology , Diazepam/pharmacology , Ketamine/pharmacology , Rats , Rats, Wistar
3.
Neuropharmacology ; 143: 130-142, 2018 12.
Article in English | MEDLINE | ID: mdl-30243914

ABSTRACT

Cognitive impairments in Alzheimer's disease (AD) have been associated with alterations in neuronal oscillatory activity, of which hippocampal theta and gamma oscillations are essential for the coordination of neuronal networks during cognitive functions. Cognitive deterioration in AD is delayed by symptomatic treatment with donepezil and other acetylcholinesterase inhibitors (AChEIs). However, the efficacy of symptomatic monotherapy is insufficient. Combining 5-HT receptor antagonists with AChEIs represents a promising new approach for symptomatic treatment of AD. The selective 5-HT3 receptor antagonist ondansetron decreases the activity of interneurons with a concomitant increase in the activity of pyramidal neurons in the hippocampus of freely moving rats. Additionally, 5-HT3 receptor antagonism modulates acetylcholine release in rat cortex and hippocampus. We investigated the effects of ondansetron alone and in combination with donepezil on hippocampal oscillations using in vivo electrophysiology. Neuronal network oscillations were recorded in the dorsal hippocampus during electrical stimulation of the brainstem pedunculopontine tegmental nucleus in urethane-anaesthetised rats. In addition, potential pharmacokinetic interactions between donepezil and ondansetron were assessed. Ondansetron alone did not affect hippocampal network oscillations. Donepezil dose-dependently increased hippocampal theta and gamma power during PPT stimulation. Ondansetron (0.3 mg/kg, i.v.) potentiated theta and gamma responses to 0.2 mg/kg donepezil and prolonged theta and gamma responses to 0.3 mg/kg donepezil. These effects could not be attributed to pharmacokinetic interactions between the compounds. This study demonstrates that ondansetron potentiates the effects of donepezil on elicited neuronal oscillations and suggests that 5-HT3 receptor antagonists may be beneficial as adjunctive therapy to AChEIs for the symptomatic treatment of cognitive deficits in AD.


Subject(s)
Brain Waves/drug effects , Cholinesterase Inhibitors/pharmacology , Donepezil/pharmacology , Hippocampus/drug effects , Ondansetron/pharmacology , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Alzheimer Disease/drug therapy , Anesthesia , Animals , Brain Waves/physiology , Cholinesterase Inhibitors/pharmacokinetics , Donepezil/pharmacokinetics , Dose-Response Relationship, Drug , Drug Synergism , Hippocampus/physiology , Male , Nootropic Agents/pharmacokinetics , Nootropic Agents/pharmacology , Ondansetron/pharmacokinetics , Pedunculopontine Tegmental Nucleus/physiology , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT3/metabolism
4.
Neuropharmacology ; 137: 13-23, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29702122

ABSTRACT

BACKGROUND: Sub-anesthetic doses of the non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonist ketamine evoke transient psychotomimetic effects, followed by persistent antidepressant effects in treatment-resistant depressed patients and rodents through still poorly understood mechanisms. Since phencyclidine (PCP) disinhibits thalamo-cortical networks by blocking NMDA-Rs on GABAergic neurons of the reticular thalamic nucleus (RtN), we examined ketamine's actions in the same areas. METHODS: Single units and local field potentials were recorded in chloral hydrate anesthetized male Wistar rats. The effects of cumulative ketamine doses (0.25-5 mg/kg, i.v.) on neuronal discharge and oscillatory activity were examined in RtN, mediodorsal and centromedial (MD/CM) thalamic nuclei, and layer VI of the medial prefrontal cortex (mPFC). RESULTS: Ketamine (1, 2 and 5 mg/kg, i.v.) significantly decreased the discharge of MD/CM, RtN and layer VI mPFC pyramidal neurons. Simultaneously, ketamine decreased the power of low frequency oscillations in all areas examined and increased gamma oscillations in mPFC and MD/CM. Lower ketamine doses (0.25 and 0.5 mg/kg, i.v.) were ineffective. CONCLUSIONS: As observed for PCP, ketamine markedly inhibited the activity of RtN neurons. However, unlike PCP, this effect did not translate into a disinhibition of MD/CM and mPFC excitatory neurons, possibly due to a more potent and simultaneous blockade of NMDA-Rs by ketamine in MD/CM and mPFC neurons. Hence, the present in vivo results show that ketamine evokes an early transient inhibition of neuronal discharge in thalamo-cortical networks, following its rapid pharmacokinetics, which is likely associated to its psychotomimetic effects. The prolonged increase in gamma oscillations may underlie its antidepressant action.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Gamma Rhythm/drug effects , Ketamine/pharmacology , Neurons/drug effects , Prefrontal Cortex/drug effects , Thalamic Nuclei/drug effects , Action Potentials/drug effects , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/blood , Gamma Rhythm/physiology , Ketamine/blood , Male , Neural Inhibition/drug effects , Neurons/physiology , Phencyclidine/pharmacology , Prefrontal Cortex/physiology , Rats, Wistar , Thalamic Nuclei/physiology
5.
Neuropharmacology ; 113(Pt A): 45-59, 2017 02.
Article in English | MEDLINE | ID: mdl-27647493

ABSTRACT

The 5-HT6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil-treated AD patients.


Subject(s)
Benzylamines/administration & dosage , Cholinesterase Inhibitors/administration & dosage , Frontal Lobe/physiology , Gamma Rhythm/drug effects , Indans/administration & dosage , Indoles/administration & dosage , Piperidines/administration & dosage , Receptors, Serotonin/physiology , Serotonin Antagonists/administration & dosage , Sleep Stages/drug effects , Alzheimer Disease/physiopathology , Animals , Brain Stem/physiology , Donepezil , Electric Stimulation , Electroencephalography , Frontal Lobe/drug effects , Male , Rats , Rats, Sprague-Dawley , Wakefulness/drug effects
6.
Neuropharmacology ; 107: 351-363, 2016 08.
Article in English | MEDLINE | ID: mdl-27039041

ABSTRACT

The 5-HT6 receptor has emerged as a promising target for cognitive disorders and combining a 5-HT6 receptor antagonist with an acetylcholinesterase inhibitor (AChEI) represents a novel approach for the symptomatic treatment of Alzheimer's disease (AD). A recent phase 2 trial showed that the selective 5-HT6 receptor antagonist idalopirdine (Lu AE58054) improved cognition in patients with moderate AD on stable treatment with the AChEI donepezil. Here we investigated the effects of idalopirdine in combination with donepezil on hippocampal function using in vivo electrophysiology and microdialysis. Network oscillations in the hippocampus were recorded during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and hippocampal acetylcholine (ACh) levels were measured in the freely-moving rat. In addition, potential pharmacokinetic interactions between idalopirdine and donepezil were assessed. Idalopirdine alone did not affect hippocampal network oscillations or ACh levels. Donepezil (0.3 and 1.0 mg/kg i.v.) dose-dependently increased hippocampal theta and gamma power during nPO stimulation. Idalopirdine (2 mg/kg i.v.), administered 1 h prior to donepezil, potentiated the theta and gamma response to 0.3 mg/kg donepezil and prolonged the gamma response to 1 mg/kg donepezil. Donepezil (1.3 mg/kg s.c.) increased extracellular ACh levels in the hippocampus and this was further augmented by administration of idalopirdine (10 mg/kg p.o.) 2 h prior to donepezil. These effects could not be attributed to a pharmacokinetic interaction between the compounds. This study demonstrates that idalopirdine potentiates the effects of donepezil on two pharmacodynamic biomarkers associated with cognition, i.e. neuronal oscillations and extracellular ACh levels in the hippocampus. Such potentiation could contribute to the procognitive effects of idalopirdine observed in donepezil-treated AD patients.


Subject(s)
Acetylcholine/metabolism , Benzylamines/administration & dosage , Brain Waves/physiology , Cholinesterase Inhibitors/administration & dosage , Hippocampus/metabolism , Indoles/administration & dosage , Receptors, Serotonin/metabolism , Animals , Biological Clocks/drug effects , Biological Clocks/physiology , Brain Waves/drug effects , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Hippocampus/drug effects , Male , Nerve Net/drug effects , Nerve Net/metabolism , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/pharmacology
7.
Front Pharmacol ; 3: 11, 2012.
Article in English | MEDLINE | ID: mdl-22347859

ABSTRACT

Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca(2+)-activated K(+) channels (SK channels), in particular the SK3 subtype, are important in the physiology of DA neurons, and agents modifying SK channel activity could potentially affect DA signaling and DA-related behaviors. Here we show that cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), a subtype-selective positive modulator of SK channels (SK3 > SK2 > > > SK1, IK), decreased spontaneous firing rate, increased the duration of the apamin-sensitive afterhyperpolarization, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both mouse and rat midbrain slices. Using an immunocytochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly influences physiological as well as pharmacologically induced hyperdopaminergic behavior.

8.
J Neurosci ; 30(42): 14273-83, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20962248

ABSTRACT

Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation of the boundaries of dopaminergic volume transmission. Bursts primarily increase occupancy of D(1) receptors, whereas pauses translate into low occupancy of D(1) and D(2) receptors. Phasic firing patterns, composed of bursts and pauses, reduce the average D(2) receptor occupancy and increase average D(1) receptor occupancy compared with equivalent tonic firing. Receptor occupancy is crucially dependent on synchrony and the balance between tonic and phasic firing modes. Our results provide quantitative insight in the dynamics of volume transmission and complement experimental data obtained with electrophysiology, positron emission tomography, microdialysis, amperometry, and voltammetry.


Subject(s)
Dopamine/metabolism , Receptors, Dopamine/physiology , Algorithms , Axons/physiology , Corpus Striatum/cytology , Corpus Striatum/physiology , Electrophysiology , Extracellular Space/metabolism , Kinetics , Models, Neurological , Models, Statistical , Nerve Endings/metabolism , Neurons/physiology , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology
9.
J Neurophysiol ; 104(3): 1726-35, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20660424

ABSTRACT

Dopamine (DA) neurons are autonomous pacemakers that occasionally fire bursts of action potentials, discharge patterns thought to reflect tonic and phasic DA signaling, respectively. Pacemaker activity depends on the concerted and cyclic interplay between intrinsic ion channels with small conductance Ca(2+)-activated K(+) (SK) channels playing an important role. Bursting activity is synaptically initiated but neither the transmitters nor the specific ion conductances involved have been definitively identified. Physiological and pharmacological regulation of SK channel Ca(2+) sensitivity has recently been demonstrated and could represent a powerful means of modulating the expression of tonic/phasic signaling in DA neurons in vivo. To test this premise, we characterized the effects of intravenous administration of the novel positive and negative SK channel modulators NS309 and NS8593, respectively, on the spontaneous activity of substantia nigra pars compacta DA neurons in anesthetized C57BL/6 mice. NS309, dose-dependently decreased DA cell firing rate, increased the proportion of regular firing cells, and eventually stopped spontaneous firing. By contrast, systemic administration of the negative SK channel modulator NS8593 increased firing rate and shifted the pattern toward increased irregularity/bursting; an effect similar to local application of the pore blocking peptide apamin. The altered firing patterns resulting from inhibiting SK currents persisted independently of changes in firing rates induced by administration of DA autoreceptor agonists/antagonists. We conclude that pharmacological modulation of SK channel Ca(2+)-sensitivity represents a powerful mechanism for switching DA neuron firing activity between tonic and phasic signaling modalities in vivo.


Subject(s)
Action Potentials/physiology , Dopamine/physiology , Ion Channel Gating/physiology , Neurons/physiology , Potassium Channels, Calcium-Activated/physiology , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/pharmacology , Action Potentials/drug effects , Animals , Dose-Response Relationship, Drug , Indoles/pharmacology , Ion Channel Gating/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Oximes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL