Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 29(12): 1839-1855, 2023 12.
Article in English | MEDLINE | ID: mdl-37816550

ABSTRACT

The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, limitations, and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3'-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for continuous extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies, while the containers and reproducible workflows could easily be deployed and extended to evaluate new methods or data sets.


Subject(s)
Benchmarking , RNA , RNA/genetics , RNA-Seq , Polyadenylation , Sequence Analysis, RNA/methods
2.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425672

ABSTRACT

The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, and limitations and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3'-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for seamless extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies. Furthermore, the containers and reproducible workflows generated in the course of this project can be seamlessly deployed and extended in the future to evaluate new methods or datasets.

3.
Nucleic Acids Res ; 50(6): 3096-3114, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35234914

ABSTRACT

The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3' UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.


Subject(s)
MicroRNAs , Polyadenylation , 3' Untranslated Regions , Animals , Cleavage And Polyadenylation Specificity Factor/genetics , Fibrinogen/genetics , Mammals/genetics , MicroRNAs/genetics , mRNA Cleavage and Polyadenylation Factors/genetics
4.
Nucleic Acids Res ; 48(D1): D174-D179, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31617559

ABSTRACT

Generated by 3' end cleavage and polyadenylation at alternative polyadenylation (poly(A)) sites, alternative terminal exons account for much of the variation between human transcript isoforms. More than a dozen protocols have been developed so far for capturing and sequencing RNA 3' ends from a variety of cell types and species. In previous studies, we have used these data to uncover novel regulatory signals and cell type-specific isoforms. Here we present an update of the PolyASite (https://polyasite.unibas.ch) resource of poly(A) sites, constructed from publicly available human, mouse and worm 3' end sequencing datasets by enforcing uniform quality measures, including the flagging of putative internal priming sites. Through integrated processing of all data, we identified and clustered sites that are closely spaced and share polyadenylation signals, as these are likely the result of stochastic variations in processing. For each cluster, we identified the representative - most frequently processed - site and estimated the relative use in the transcriptome across all samples. We have established a modern web portal for efficient finding, exploration and export of data. Database generation is fully automated, greatly facilitating incorporation of new datasets and the updating of underlying genome resources.


Subject(s)
Databases, Nucleic Acid , Polyadenylation , Animals , Caenorhabditis elegans/genetics , Humans , Mice , Poly A/analysis , Sequence Analysis, RNA
5.
Proteomics ; 15(18): 3163-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25656970

ABSTRACT

Protein quantification at proteome-wide scale is an important aim, enabling insights into fundamental cellular biology and serving to constrain experiments and theoretical models. While proteome-wide quantification is not yet fully routine, many datasets approaching proteome-wide coverage are becoming available through biophysical and MS techniques. Data of this type can be accessed via a variety of sources, including publication supplements and online data repositories. However, access to the data is still fragmentary, and comparisons across experiments and organisms are not straightforward. Here, we describe recent updates to our database resource "PaxDb" (Protein Abundances Across Organisms). PaxDb focuses on protein abundance information at proteome-wide scope, irrespective of the underlying measurement technique. Quantification data is reprocessed, unified, and quality-scored, and then integrated to build a meta-resource. PaxDb also allows evolutionary comparisons through precomputed gene orthology relations. Recently, we have expanded the scope of the database to include cell-line samples, and more systematically scan the literature for suitable datasets. We report that a significant fraction of published experiments cannot readily be accessed and/or parsed for quantitative information, requiring additional steps and efforts. The current update brings PaxDb to 414 datasets in 53 organisms, with (semi-) quantitative abundance information covering more than 300,000 proteins.


Subject(s)
Databases, Protein , Proteome/analysis , Proteomics/methods , Software , Animals , Humans
6.
PLoS Genet ; 10(5): e1004341, 2014 May.
Article in English | MEDLINE | ID: mdl-24785082

ABSTRACT

The subcellular localization of the epidermal growth factor receptor (EGFR) in polarized epithelial cells profoundly affects the activity of the intracellular signaling pathways activated after EGF ligand binding. Therefore, changes in EGFR localization and signaling are implicated in various human diseases, including different types of cancer. We have performed the first in vivo EGFR localization screen in an animal model by observing the expression of the EGFR ortholog LET-23 in the vulval epithelium of live C. elegans larvae. After systematically testing all genes known to produce an aberrant vulval phenotype, we have identified 81 genes regulating various aspects of EGFR localization and expression. In particular, we have found that ERM-1, the sole C. elegans Ezrin/Radixin/Moesin homolog, regulates EGFR localization and signaling in the vulval cells. ERM-1 interacts with the EGFR at the basolateral plasma membrane in a complex distinct from the previously identified LIN-2/LIN-7/LIN-10 receptor localization complex. We propose that ERM-1 binds to and sequesters basolateral LET-23 EGFR in an actin-rich inactive membrane compartment to restrict receptor mobility and signaling. In this manner, ERM-1 prevents the immediate activation of the entire pool of LET-23 EGFR and permits the generation of a long-lasting inductive signal. The regulation of receptor localization thus serves to fine-tune the temporal activation of intracellular signaling pathways.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/metabolism , Cytoskeletal Proteins/physiology , ErbB Receptors/metabolism , Signal Transduction/physiology , Animals , ErbB Receptors/genetics , Microscopy, Fluorescence , Protein Transport , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...