Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters











Publication year range
1.
Small ; : e2404309, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246186

ABSTRACT

Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min per µ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.

2.
J Am Chem Soc ; 146(30): 20550-20555, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39038812

ABSTRACT

A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores. The core/shell structures are fully crystalline. Upon shelling, the optical properties of the europium dopant are dramatically improved (featuring a more uniform coordination and a longer photoluminescence lifetime), indicating the suppression of nonradiative pathways. These results launch the stable zirconium and hafnium oxide hosts as alternatives for the established NaYF4 systems.

3.
Adv Sci (Weinh) ; 11(29): e2400673, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38775058

ABSTRACT

Anastomotic leakage (AL) is the leaking of non-sterile gastrointestinal contents into a patient's abdominal cavity. AL is one of the most dreaded complications following gastrointestinal surgery, with mortality rates reaching up to 27%. The current diagnostic methods for anastomotic leaks are limited in sensitivity and specificity. Since the timing of detection directly impacts patient outcomes, developing new, fast, and simple methods for early leak detection is crucial. Here, a naked eye-readable, electronic-free macromolecular network drain fluid sensor is introduced for continuous monitoring and early detection of AL at the patient's bedside. The sensor array comprises three different macromolecular network sensing elements, each tailored for selectivity toward the three major digestive enzymes found in the drainage fluid during a developing AL. Upon digestion of the macromolecular network structure by the respective digestive enzymes, the sensor produces an optical shift discernible to the naked eye. The diagnostic efficacy and clinical applicability of these sensors are demonstrated using clinical samples from 32 patients, yielding a Receiver Operating Characteristic Area Under the Curve (ROC AUC) of 1.0. This work has the potential to significantly contribute to improved patient outcomes through continuous monitoring and early, low-cost, and reliable AL detection.


Subject(s)
Anastomotic Leak , Early Diagnosis , Humans , Anastomotic Leak/diagnosis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
4.
Small ; 20(34): e2311115, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38556634

ABSTRACT

Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.


Subject(s)
Oxides , Protein Corona , Oxides/chemistry , Animals , Catalysis , Protein Corona/chemistry , Protein Corona/metabolism , Protein Aggregates , Macrophages/metabolism , Mice , Metals/chemistry , Humans , RAW 264.7 Cells
5.
Front Bioeng Biotechnol ; 12: 1363126, 2024.
Article in English | MEDLINE | ID: mdl-38532882

ABSTRACT

Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy.

6.
Adv Mater ; 36(23): e2310301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38298130

ABSTRACT

Female sterilization via fallopian tube ligation is a common procedure; However, after the operation, over 10% of women seek re-fertilization, which is frequently unsuccessful. In addition, there is evidence that fallopian tubes contribute to the spread of endometriotic tissue as they serve as channels for proinflammatory media entering the abdominal cavity via retrograde menstruation. Here, stimuli-degradable hydrogel implants are presented for the functional, biocompatible, and reversible occlusion of fallopian tubes. The hydrogel implants, designed with customized swelling properties, mechanically occlude fallopian tubes in a high-performance manner with burst pressures reaching 255-558 mmHg, exceeding normal abdominal pressures (95 mmHg). Their damage-free removal can be achieved within 30 min using near-visible UV light or a glutathione solution, employing a method akin to standard fallopian tube perfusion diagnostics. Ultrasound-guided implant placement is demonstrated using a clinical hysteroscope in a human-scale uterus model and biocompatibility in a porcine in vivo model. Importantly, the prevention of live sperm as well as endometrial cell passage through blocked fallopian tubes is demonstrated. Overall, a multifunctional system is presented that constitutes a possible means of on-demand, reversible contraception along with the first-ever mechanical approach to abdominal endometriosis prevention and treatment.


Subject(s)
Endometriosis , Fallopian Tubes , Hydrogels , Hydrogels/chemistry , Female , Endometriosis/pathology , Animals , Humans , Swine , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
7.
Adv Healthc Mater ; 13(10): e2302950, 2024 04.
Article in English | MEDLINE | ID: mdl-38245823

ABSTRACT

Hip arthroplasty effectively treats advanced osteoarthritis and is therefore entitled as "operation of the 20th century." With demographic shifts, the USA alone is projected to perform up to 850 000 arthroplasties annually by 2030. Many implants now feature a ceramic head, valued for strength and wear resistance. Nonetheless, a fraction, up to 0.03% may fracture during their lifespan, demanding complex removal procedures. To address this, a radiation-free, fluorescence-based image-guided surgical technique is presented. The method uses the inherent fluorescence of ceramic implant materials, demonstrated through chemical and optical analysis of prevalent implant types. Specifically, Biolox delta implants exhibited strong fluorescence around 700 nm with a 74% photoluminescence quantum yield. Emission tails are identified extending into the near-infrared (NIR-I) biological transparency range, forming a vital prerequisite for the label-free visualization of fragments. This ruby-like fluorescence could be attributed to Cr within the zirconia-toughened alumina matrix, enabling the detection of even deep-seated millimeter-sized fragments via camera-assisted techniques. Additionally, fluorescence microscopy allowed detection of µm-sized ceramic particles, enabling debris visualization in synovial fluid as well as histological samples. This label-free optical imaging approach employs readily accessible equipment and can seamlessly transition to clinical settings without significant regulatory barriers, thereby enhancing the safety, efficiency, and minimally invasive nature of fractured ceramic implant removal procedures.


Subject(s)
Hip Prosthesis , Surgery, Computer-Assisted , Fluorescence , Ceramics , Zirconium
8.
J Cereb Blood Flow Metab ; : 271678X231216270, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38000040

ABSTRACT

Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability.

9.
Nanoscale ; 15(45): 18139-18155, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37946534

ABSTRACT

The field of nanomedicine is rapidly evolving, with new materials and formulations being reported almost daily. In this respect, inorganic and inorganic-organic composite nanomaterials have gained significant attention. However, the use of new materials in clinical trials and their final approval as drugs has been hampered by several challenges, one of which is the complex and difficult to control nanomaterial chemistry that takes place within the body. Several reviews have summarized investigations on inorganic nanomaterial stability in model body fluids, cell cultures, and organisms, focusing on their degradation as well as the influence of corona formation. However, in addition to these aspects, various chemical reactions of nanomaterials, including phase transformation and/or the formation of new/secondary nanomaterials, have been reported. In this review, we discuss recent advances in our understanding of biochemical transformations of medically relevant inorganic (composite) nanomaterials in environments related to their applications. We provide a refined terminology for the primary reaction mechanisms involved to bridge the gaps between different disciplines involved in this research. Furthermore, we highlight suitable analytical techniques that can be harnessed to explore the described reactions. Finally, we highlight opportunities to utilize them for diagnostic and therapeutic purposes and discuss current challenges and research priorities.


Subject(s)
Nanomedicine , Nanostructures , Nanomedicine/methods , Nanostructures/chemistry , Cell Culture Techniques
10.
Biomater Sci ; 11(24): 7826-7837, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37878039

ABSTRACT

Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti3C2Tx MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti3C2Tx MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti3C2Tx MXenes, marking them as a promising candidate for enhancing radiotherapy.


Subject(s)
Metal Nanoparticles , Sarcoma , Humans , Animals , X-Rays , Titanium/pharmacology , Sarcoma/radiotherapy , Antioxidants , Oxides , Mammals
11.
Small Methods ; 7(11): e2300693, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37592160

ABSTRACT

While often life-saving, surgical resectioning of diseased tissues puts patients at risk for post-operative complications. Sutures and staples are well-accepted and routinely used to reconnect tissues, however, their mechanical mismatch with biological soft tissue and invasiveness contribute to wound healing complications, infections, and post-operative fluid leakage. In principle, laser tissue soldering offers an attractive, minimally-invasive alternative for seamless soft tissue fusion. However, despite encouraging experimental observations, including accelerated healing and lowered infection risk, critical issues related to temperature monitoring and control during soldering and associated complications have prevented their clinical exploitation to date. Here, intelligent laser tissue soldering (iSoldering) with integrated nanothermometry is introduced as a promising yet unexplored approach to overcome the critical shortcomings of laser tissue soldering. It demonstrates that adding thermoplasmonic and nanothermometry nanoparticles to proteinaceous solders enables heat confinement and non-invasive temperature monitoring and control, offering a route to high-performance, leak-tight tissue sealing even at deep tissue sites. The resulting tissue seals exhibit excellent mechanical properties and resistance to chemically-aggressive digestive fluids, including gastrointestinal juice. The iSolder can be readily cut and shaped by surgeons to optimally fit the tissue defect and can even be applied using infrared light from a medically approved light source, hence fulfilling key prerequisites for application in the operating theatre. Overall, iSoldering enables reproducible and well-controlled high-performance tissue sealing, offering new prospects for its clinical exploitation in diverse fields ranging from cardiovascular to visceral and plastic surgery.


Subject(s)
Laser Therapy , Plastic Surgery Procedures , Humans , Laser Therapy/methods , Wound Healing , Lasers , Hot Temperature
12.
Mater Horiz ; 10(10): 4059-4082, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37555747

ABSTRACT

Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.


Subject(s)
Metal Nanoparticles , Nanostructures , Radiation-Sensitizing Agents , Metal Nanoparticles/therapeutic use , Gold , Radiation-Sensitizing Agents/therapeutic use , Nanotechnology
13.
ACS Appl Mater Interfaces ; 15(32): 38367-38380, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37549199

ABSTRACT

Metal-organic frameworks (MOFs) have found increasing applications in the biomedical field due to their unique properties and high modularity. Although the limited stability of MOFs in biological environments is increasingly recognized, analytical techniques have not yet been harnessed to their full potential to assess the biological fate of MOFs. Here, we investigate the environment-dependent biochemical transformations of widely researched nanosized MOFs (nMOFs) under conditions relevant to their medical application. We assess the chemical stability of antimicrobial zinc-based drug delivery nMOFs (Zn-ZIF-8 and Zn-ZIF-8:Ce) and radio-enhancer candidate nMOFs (Hf-DBA, Ti-MIL-125, and TiZr-PCN-415) containing biologically nonessential group IV metal ions. We reveal that even a moderate decrease in pH to values encountered in lysosomes (pH 4.5-5) leads to significant dissolution of ZIF-8 and partial dissolution of Ti-MIL-125, whereas no substantial dissolution was observed for TiZr-PCN-415 and Hf-DBA nMOFs. Exposure to phosphate-rich buffers led to phosphate incorporation in all nMOFs, resulting in amorphization and morphological changes. Interestingly, long-term cell culture studies revealed that nMOF (bio)transformations of, e.g., Ti-MIL-125 were cellular compartment-dependent and that the phosphate content in the nMOF varied significantly between nMOFs localized in lysosomes and those in the cytoplasm. These results illustrate the delicate nature and environment-dependent properties of nMOFs across all stages of their life cycle, including storage, formulation, and application, and the need for in-depth analyses of biotransformations for an improved understanding of structure-function relationships. The findings encourage the considerate choice of suspension buffers for MOFs because these media may lead to significant material alterations prior to application.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Drug Delivery Systems , Metals/chemistry , Organic Chemicals , Biotransformation
14.
Acta Biomater ; 169: 138-154, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37517619

ABSTRACT

Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.


Subject(s)
Bioprosthesis , Calcinosis , Heart Failure , Heart Valve Prosthesis , Animals , Cattle , Heart Valves , Collagen , Aortic Valve/surgery
15.
Adv Sci (Weinh) ; 10(23): e2301207, 2023 08.
Article in English | MEDLINE | ID: mdl-37276437

ABSTRACT

Postoperative anastomotic leaks are the most feared complications after gastric surgery. For diagnostics clinicians mostly rely on clinical symptoms such as fever and tachycardia, often developing as a result of an already fully developed, i.e., symptomatic, surgical leak. A gastric fluid responsive, dual modality, electronic-free, leak sensor system integrable into surgical adhesive suture support materials is introduced. Leak sensors contain high atomic number carbonates embedded in a polyacrylamide matrix, that upon exposure to gastric fluid convert into gaseous carbon dioxide (CO2 ). CO2 bubbles remain entrapped in the hydrogel matrix, leading to a distinctly increased echogenic contrast detectable by a low-cost and portable ultrasound transducer, while the dissolution of the carbonate species and the resulting diffusion of the cation produces a markedly reduced contrast in computed tomography imaging. The sensing elements can be patterned into a variety of characteristic shapes and can be combined with nonreactive tantalum oxide reference elements, allowing the design of shape-morphing sensing elements visible to the naked eye as well as artificial intelligence-assisted automated detection. In summary, shape-morphing dual modality sensors for the early and robust detection of postoperative complications at deep tissue sites, opening new routes for postoperative patient surveillance using existing hospital infrastructure is reported.


Subject(s)
Artificial Intelligence , Carbon Dioxide , Humans , Postoperative Complications , Anastomotic Leak/diagnosis , Tomography, X-Ray Computed
16.
Adv Biol (Weinh) ; 7(7): e2300075, 2023 07.
Article in English | MEDLINE | ID: mdl-37178330

ABSTRACT

Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials. Its potential for rapid candidate materials screening is showcased based on the example of nano-sized metal-organic frameworks (nMOFs) and direct benchmarking against gold nanoparticles (the current "gold standard"). Dose enhancement factors (DEFs) ranging between 1.4 and 1.8 are measured for Hf-, Ti-, TiZr-, and Au-based materials in 3D tissues and are overall lower than in 2D cell cultures, where DEF values exceeding 2 are found. In summary, the presented co-cultured tumor spheroid-healthy fibroblast model with tissue-like characteristics may serve as high-throughput platform enabling rapid, cell line-specific endpoint analysis for therapeutic efficacy and toxicity assessment, as well as accelerated radio-enhancer candidate screening.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Neoplasms , Humans , Coculture Techniques , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/therapeutic use , Gold/toxicity , Gold/therapeutic use , Tissue Distribution , Spheroids, Cellular , Metal Nanoparticles/toxicity , Neoplasms/radiotherapy
17.
Artif Organs ; 47(8): 1309-1318, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36995348

ABSTRACT

BACKGROUND: Preeclampsia remains one of the most serious complications of pregnancy. Effective therapies are yet to be developed. Recent research has identified an imbalance of angiogenic and antiangiogenic factors as a root cause of preeclampsia. In particular, soluble fms-like tyrosine kinase-1 (sFlt-1) has been shown to bind the angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing blood vessel growth. Increasing preclinical and clinical evidence suggests that removal of the sFlt-1 protein may benefit patients with early onset preeclampsia. sFlt-1 may be removed by conventional blood purification techniques, such as therapeutic plasma exchange (TPE) and dextran sulfate apheresis (DSA), or emerging technologies, including extracorporeal magnetic blood purification (MBP). METHODS: We compare the performance and selectivity of TPE, DSA, and MBP for the therapeutic removal of sFlt-1. For MPB, we employ magnetic nanoparticles functionalized with either sFlt-1 antibodies or the sFlt-1-binding partner, vascular endothelial growth factor (VEGF). RESULTS: We demonstrate that sFlt-1 removal by MBP is feasible and significantly more selective than TPE and DSA at comparable sFlt-1 removal efficiencies (MBP 96%, TPE 92%, DSA 78%). During both TPE and DSA, complement factors (incl. C3c and C4) are depleted to a considerable extent (-90% for TPE, -55% for DSA), while in MBP, complement factor concentrations remain unaltered. We further demonstrate that the removal efficacy of sFlt-1 in the MBP approach is strongly dependent on the nanoparticle type and dose and can be optimized to reach clinically feasible throughputs. CONCLUSIONS: Taken together, the highly selective removal of sFlt-1 and potential other disease-causing factors by extracorporeal magnetic blood purification may offer new prospects for preeclamptic patients.


Subject(s)
Blood Component Removal , Pre-Eclampsia , Pregnancy , Humans , Female , Vascular Endothelial Growth Factor A , Pre-Eclampsia/therapy , Plasma Exchange , Placenta Growth Factor , Vascular Endothelial Growth Factor Receptor-1/metabolism , Dextran Sulfate , Blood Component Removal/methods , Magnetic Phenomena
18.
ACS Mater Au ; 3(1): 24-27, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36647456

ABSTRACT

Close collaboration between basic researchers and clinicians is at the root of medical material and technology innovation. However, the distinctly different educational curricula and various boundary conditions put barriers on such interactions. This short perspective describes current challenges and provides subsequent solutions that may help research laboratories to overcome frequent hurdles and maximize interdisciplinary interactions. The involvement of various stakeholders is key to establishing an environment for barrier-free, effective collaboration, overcoming disciplinary boundaries and creating a strong source of inspiration and motivation for biomedical innovations with clinical impact.

19.
Small Methods ; 7(2): e2201061, 2023 02.
Article in English | MEDLINE | ID: mdl-36572638

ABSTRACT

Imaging of iron-based nanoparticles (NPs) remains challenging because of the presence of endogenous iron in tissues that is difficult to distinguish from exogenous iron originating from the NPs. Here, an analytical cascade for characterizing the biodistribution of biomedically relevant iron-based NPs from the organ scale to the cellular and subcellular scales is introduced. The biodistribution on an organ level is assessed by elemental analysis and quantification of magnetic iron by electron paramagnetic resonance, which allowed differentiation of exogenous and endogenous iron. Complementary to these bulk analysis techniques, correlative whole-slide optical and electron microscopy provided spatially resolved insight into the biodistribution of endo- and exogenous iron accumulation in macrophages, with single-cell and single-particle resolution, revealing coaccumulation of iron NPs with endogenous iron in splenic macrophages. Subsequent transmission electron microscopy revealed two types of morphologically distinct iron-containing structures (exogenous nanoparticles and endogenous ferritin) within membrane-bound vesicles in the cytoplasm, hinting at an attempt of splenic macrophages to extract and recycle iron from exogenous nanoparticles. Overall, this strategy enables the distinction of endo- and exogenous iron across scales (from cm to nm, based on the analysis of thousands of cells) and illustrates distribution on organ, cell, and organelle levels.


Subject(s)
Iron , Macrophages , Tissue Distribution , Microscopy, Electron , Microscopy, Electron, Transmission
20.
Nat Commun ; 13(1): 7311, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36437258

ABSTRACT

Millions of patients every year undergo gastrointestinal surgery. While often lifesaving, sutured and stapled reconnections leak in around 10% of cases. Currently, surgeons rely on the monitoring of surrogate markers and clinical symptoms, which often lack sensitivity and specificity, hence only offering late-stage detection of fully developed leaks. Here, we present a holistic solution in the form of a modular, intelligent suture support sealant patch capable of containing and detecting leaks early. The pH and/or enzyme-responsive triggerable sensing elements can be read out by point-of-need ultrasound imaging. We demonstrate reliable detection of the breaching of sutures, in as little as 3 hours in intestinal leak scenarios and 15 minutes in gastric leak conditions. This technology paves the way for next-generation suture support materials that seal and offer disambiguation in cases of anastomotic leaks based on point-of-need monitoring, without reliance on complex electronics or bulky (bio)electronic implantables.


Subject(s)
Anastomotic Leak , Hydrogels , Humans , Anastomotic Leak/diagnostic imaging , Early Diagnosis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL