Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 16(7): 748-759, 2021 07.
Article in English | MEDLINE | ID: mdl-34211166

ABSTRACT

Extracellular-vesicle-based cell-to-cell communication is conserved across all kingdoms of life. There is compelling evidence that extracellular vesicles are involved in major (patho)physiological processes, including cellular homoeostasis, infection propagation, cancer development and cardiovascular diseases. Various studies suggest that extracellular vesicles have several advantages over conventional synthetic carriers, opening new frontiers for modern drug delivery. Despite extensive research, clinical translation of extracellular-vesicle-based therapies remains challenging. Here, we discuss the uniqueness of extracellular vesicles along with critical design and development steps required to utilize their full potential as drug carriers, including loading methods, in-depth characterization and large-scale manufacturing. We compare the prospects of extracellular vesicles with those of the well established liposomes and provide guidelines to direct the process of developing vesicle-based drug delivery systems.


Subject(s)
Drug Delivery Systems , Extracellular Vesicles , Humans
2.
ACS Biomater Sci Eng ; 7(6): 2676-2686, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33890779

ABSTRACT

Seroma formation is a well-recognized postoperative complication for many plastic and general surgical procedures. Although various tissue adhesives and substances have been used in an effort to treat seroma formation, no therapies have been established clinically. Recently, the nano-bridging phenomenon has been introduced as a promising approach to achieve tissue adhesion and strong closure of deep skin wounds in rats. The present study seeks to assess the potential of nano-bridging beyond skin wounds in a rat model of seroma. Seromas were induced in 20 Lewis rats through bilateral axillary lymphadenectomy, excision of the latissimus dorsi and cutaneous maximus muscles, and disruption of dermal lymphatics. On postoperative day (POD) 7, the seroma was aspirated on both sides. A bioactive nanoparticle (NP) suspension based on zinc-doped strontium-substituted bioglass/ceria nanoparticles (NP group) or fibrin glue (fibrin group) was injected into the right seroma cavity, while the left side was left untreated. On POD 14, the NP group showed complete remission (no seromas at all), while the fibrin group recorded a reduction of only 63% in the seroma fluid volume. The NPs exerted local anti-inflammatory and neo-angiogenic effects, without any detectable systemic changes. Moreover, the ceria levels recorded in the organs did not surpass the background level, indicating that the nanoparticles stayed at the site of application. This study is a promising first example demonstrating the ability of inorganic nanoparticle formulations to reduce seroma formation in a rat model, without any detectable systemic adverse effects. These results emphasize the potential of nanotechnological solutions in the therapeutic management of seroma in the clinical setting.


Subject(s)
Nanoparticles , Seroma , Animals , Fibrin Tissue Adhesive , Oxides , Rats , Rats, Inbred Lew , Seroma/drug therapy
3.
PLoS One ; 13(11): e0207802, 2018.
Article in English | MEDLINE | ID: mdl-30475867

ABSTRACT

BACKGROUND: Distal flap necrosis is a frequent complication of perforator flaps. Advances in nanotechnology offer exciting new therapeutic approaches. Anti-inflammatory and neo-angiogenic properties of certain metal oxides within the nanoparticles, including bioglass and ceria, may promote flap survival. Here, we explore the ability of various nanoparticle formulations to increase flap survival in a rat model. MATERIALS AND METHODS: A 9 x 3 cm dorsal flap based on the posterior thigh perforator was raised in 32 Lewis rats. They were divided in 4 groups and treated with different nanoparticle suspensions: I-saline (control), II-Bioglass, III-Bioglass/ceria and IV-Zinc-doped strontium-substituted bioglass/ceria. On post-operative day 7, planimetry and laser Doppler analysis were performed to assess flap survival and various samples were collected to investigate angiogenesis, inflammation and toxicity. RESULTS: All nanoparticle-treated groups showed a larger flap survival area as compared to the control group (69.9%), with groups IV (77,3%) and II (76%) achieving statistical significance. Blood flow measurements by laser Doppler analysis showed higher perfusion in the nanoparticle-treated flaps. Tissue analysis revealed higher number of blood vessels and increased VEGF expression in groups II and III. The cytokines CD31 and MCP-1 were decreased in groups II and IV. CONCLUSIONS: Bioglass-based nanoparticles exert local anti-inflammatory and neo-angiogenic effects on the distal part of a perforator flap, increasing therefore its survival. Substitutions in the bioglass matrix and trace metal doping allow for further tuning of regenerative activity. These results showcase the potential utility of these nanoparticles in the clinical setting.


Subject(s)
Nanoparticles , Perforator Flap/physiology , Tissue Survival/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Ceramics/chemistry , Ceramics/pharmacology , Rats , Skin/cytology
SELECTION OF CITATIONS
SEARCH DETAIL