Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 831: 154861, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35358531

ABSTRACT

Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.


Subject(s)
Bacteriophages , Viruses , Bacteria , Biomarkers , Disinfection , Humans , Ultrafiltration , Wastewater/microbiology , Water Microbiology
2.
J Virol Methods ; 296: 114245, 2021 10.
Article in English | MEDLINE | ID: mdl-34310974

ABSTRACT

Dead-end hollow fiber ultrafiltration combined with a single agar layer assay (D-HFUF-SAL) has potential use in the assessment of sanitary quality of recreational waters through enumeration of coliphage counts as measures of fecal contamination. However, information on applicability across a broad range of sites and water types is limited. Here, we tested the performance of D-HFUF-SAL on 49 marine and freshwater samples. Effect of method used to titer the spiking suspension (SAL versus double agar layer [DAL]) on percent recovery was also evaluated. Average somatic coliphage recovery (72 % ± 27) was significantly higher (p < 0.0001) compared to F+ (53 % ± 19). This was more pronounced for marine (p ≤ 0.0001) compared to freshwaters (p = 0.0134). Neither method affected somatic coliphage, but DAL (28 % ± 12) significantly (p < 0.0001) underestimated F + coliphage recoveries compared to SAL (53 % ± 19). Overall, results indicate that, while D-HFUF-SAL performed well over a wide variety of water types, F + coliphage recoveries were significantly reduced for marine waters suggesting that some components unique to this habitat may interfere with the assay performance. More importantly, our findings indicate that choice of spike titer method merits careful consideration since it may under-estimate method percent recovery.


Subject(s)
Ultrafiltration , Water Microbiology , Coliphages , Feces , Fresh Water
3.
Sci Total Environ ; 774: 145727, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33607441

ABSTRACT

Levels of severe acute respiratory coronavirus type 2 (SARS CoV 2) RNA in wastewater could act as an effective means to monitor coronavirus disease 2019 (COVID-19) within communities. However, current methods used to detect SARS CoV 2 RNA in wastewater are limited in their ability to process sufficient volumes of source material, inhibiting our ability to assess viral load. Typically, viruses are concentrated from large liquid volumes using two stage concentration, primary and secondary. Here, we evaluated a dead-end hollow fiber ultrafilter (D-HFUF) for primary concentration, followed by the CP Select™ for secondary concentration from 2 L volumes of primary treated wastewater. Various amendments to each concentration procedure were investigated to optimally recover seeded OC43 (betacoronavirus) from wastewater. During primary concentration, the D-HFUF recovered 69 ± 18% (n = 29) of spiked OC43 from 2 L of wastewater. For secondary concentration, the CP Select™ system using the Wastewater Application settings was capable of processing 100 mL volumes of primary filter eluates in <25 min. A hand-driven syringe elution proved to be significantly superior (p = 0.0299) to the CP Select™ elution for recovering OC43 from filter eluates, 48 ± 2% compared to 31 ± 3%, respectively. For the complete method (primary and secondary concentration combined), the D-HFUF and CP select/syringe elution achieved overall 22 ± 4% recovery of spiked OC43 through (n = 8) replicate filters. Given the lack of available standardized methodology confounded by the inherent limitations of relying on viral RNA for wastewater surveillance of SARS CoV 2, it is important to acknowledge these challenges when interpreting this data to estimate community infection rates. However, the development of methods that can substantially increase sample volumes will likely allow for reporting of quantifiable viral data for wastewater surveillance, equipping public health officials with information necessary to better estimate community infection rates.


Subject(s)
COVID-19 , Coronavirus , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
4.
J Microbiol Methods ; 179: 106099, 2020 12.
Article in English | MEDLINE | ID: mdl-33159993

ABSTRACT

The past 30 years have seen the emergence and proliferation of isothermal amplification methods (IAMs) for rapid, sensitive detection and quantification of nucleic acids in a variety of sample types. These methods share dependence on primers and probes with quantitative PCR, but they differ in the specific enzymes and instruments employed, and are frequently conducted in a binary, rather than quantitative format. IAMs typically rely on simpler instruments than PCR analyses due to the maintenance of a single temperature throughout the amplification reaction, which could facilitate deployment of IAMs in a variety of environmental and field settings. This review summarizes the mechanisms of the most common IAM methods and their use in studies of pathogens, harmful algae and fecal indicators in environmental waters, feces, wastewater, reclaimed water, and tissues of aquatic animals. Performance metrics of sensitivity, specificity and limit of detection are highlighted, and the potential for use in monitoring and regulatory contexts is discussed.


Subject(s)
Environmental Monitoring/methods , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/analysis , Nucleic Acids/genetics , Animals , Bacteria/genetics , DNA Primers/genetics , Harmful Algal Bloom , Real-Time Polymerase Chain Reaction/methods , Schistosoma/genetics , Wastewater/microbiology , Water Microbiology
5.
Appl Environ Microbiol ; 86(8)2020 04 01.
Article in English | MEDLINE | ID: mdl-32060019

ABSTRACT

Cultivated fecal indicator bacteria such as Escherichia coli and enterococci are typically used to assess the sanitary quality of recreational waters. However, these indicators suffer from several limitations, such as the length of time needed to obtain results and the fact that they are commensal inhabitants of the gastrointestinal tract of many animals and have fate and transport characteristics dissimilar to pathogenic viruses. Numerous emerging technologies that offer same-day water quality results or pollution source information or that more closely mimic persistence patterns of disease-causing pathogens that may improve water quality management are now available, but data detailing geospatial trends in wastewater across the United States are sparse. We report geospatial trends of cultivated bacteriophage (somatic, F+, and total coliphages and GB-124 phage), as well as genetic markers targeting polyomavirus, enterococci, E. coli, Bacteroidetes, and human-associated Bacteroides spp. (HF183/BacR287 and HumM2) in 49 primary influent sewage samples collected from facilities across the contiguous United States. Samples were selected from rural and urban facilities spanning broad latitude, longitude, elevation, and air temperature gradients by using a geographic information system stratified random site selection procedure. Most indicators in sewage demonstrated a remarkable similarity in concentration regardless of location. However, some exhibited predictable shifts in concentration based on either facility elevation or local air temperature. Geospatial patterns identified in this study, or the absence of such patterns, may have several impacts on the direction of future water quality management research, as well as the selection of alternative metrics to estimate sewage pollution on a national scale.IMPORTANCE This study provides multiple insights to consider for the application of bacterial and viral indicators in sewage to surface water quality monitoring across the contiguous United States, ranging from method selection considerations to future research directions. Systematic testing of a large collection of sewage samples confirmed that crAssphage genetic markers occur at a higher average concentration than key human-associated Bacteroides spp. on a national scale. Geospatial testing also suggested that some methods may be more suitable than others for widespread implementation. Nationwide characterization of indicator geospatial trends in untreated sewage represents an important step toward the validation of these newer methods for future water quality monitoring applications. In addition, the large paired-measurement data set reported here affords the opportunity to conduct a range of secondary analyses, such as the generation of new or updated quantitative microbial risk assessment models used to estimate public health risk.


Subject(s)
Bacterial Load , Feces/microbiology , Viral Load , Wastewater/microbiology , Water Quality , Environmental Monitoring , Geography , Sewage/microbiology , Spatial Analysis , United States , Waste Disposal, Fluid , Wastewater/virology
6.
Ecol Eng ; 128: 48-56, 2019.
Article in English | MEDLINE | ID: mdl-31631948

ABSTRACT

A constructed, variable-flow treatment wetland was evaluated for its ability to reduce microbial loads from the Banklick Creek, an impacted recreational waterway in Northern Kentucky. For this study, levels of traditional (Escherichia coli and enterococci measured by culture and molecular techniques) and alternative fecal indicators (infectious somatic and F+ coliphage, Clostridium spp. and Clostridium perfringens by culture), potential pathogens (molecular signal of Campylobacter spp.) as well as various microbial source tracking (MST) markers (human fecal marker HF183 and avian fecal marker GFD) were monitored during the summer and early fall through five treatment stages within the Banklick Creek Wetland. No difference in concentrations of traditional or alternative fecal indicators were observed in any of the sites monitored. Microbial source tracking markers were employed to identify sources of fecal contamination within the wetland. Human marker HF183 concentrations at beginning stages of treatment were found to be significantly higher (P value range: 0.0016-0.0003) than levels at later stages. Conversely, at later stages of treatment where frequent bird activity was observed, Campylobacter and avian marker (GFD) signals were detected at significantly higher frequencies (P value range: 0.024 to <0.0001), and both signals were strongly correlated (P = 0.0001). Our study suggests constructed wetlands are an effective means for removal of microbial contamination in ambient waters, but reliance on general fecal indicators is not ideal for determining system efficacy or assessing appropriate remediation efforts.

7.
Microbiol Resour Announc ; 8(26)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31248997

ABSTRACT

Somatic coliphages are alternative indicators of fecal pollution and attractive surrogates for viral pathogens. Here, we report the draft genome sequences of three replicate plaques from a novel Myoviridae bacteriophage isolated from raw wastewater. These genomes were similar to felix01virus phage and are predicted to contain up to 148 protein-coding genes.

8.
J Exp Biol ; 214(Pt 13): 2189-201, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21653813

ABSTRACT

Arboreal habitats create diverse challenges for animal locomotion, but the numerical and phylogenetic diversity of snakes that climb trees suggest that their overall body plan is well suited for this task. Snakes have considerable diversity of axial anatomy, but the functional consequences of this diversity for arboreal locomotion are poorly understood because of the lack of comparative data. We simulated diverse arboreal surfaces to test whether environmental structure had different effects on the locomotion of snakes belonging to two distantly related species with differences in axial musculature and stoutness. On most cylindrical surfaces lacking pegs, both species used concertina locomotion, which always involved periodic stopping and gripping but was kinematically distinct in the two species. On horizontal cylinders that were a small fraction of body diameter, the boa constrictors used a balancing form of lateral undulation that was not observed for rat snakes. For all snakes the presence of pegs elicited lateral undulation and enhanced speed. For both species maximal speeds decreased with increased incline and were greatest on cylinders with intermediate diameters that approximated the diameter of the snakes. The frictional resistances that we studied had small effects compared with those of cylinder diameter, incline and the presence of pegs. The stouter and more muscular boa constrictors were usually faster than the rat snakes when using the gripping gait, whereas rat snakes were faster when using lateral undulation on the surfaces with pegs. Thus, variation in environmental structure had several highly significant effects on locomotor mode, performance and kinematics that were species dependent.


Subject(s)
Ecosystem , Locomotion , Trees/physiology , Animals , Behavior, Animal , Biomechanical Phenomena , Ecology , Environment , Gait , Models, Biological , Motion , Snakes , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...