Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Card Fail ; 26(11): 948-958, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32473379

ABSTRACT

BACKGROUND: To estimate oxygen uptake (VO2) from cardiopulmonary exercise testing (CPX) using simultaneously recorded seismocardiogram (SCG) and electrocardiogram (ECG) signals captured with a small wearable patch. CPX is an important risk stratification tool for patients with heart failure (HF) owing to the prognostic value of the features derived from the gas exchange variables such as VO2. However, CPX requires specialized equipment, as well as trained professionals to conduct the study. METHODS AND RESULTS: We have conducted a total of 68 CPX tests on 59 patients with HF with reduced ejection fraction (31% women, mean age 55 ± 13 years, ejection fraction 0.27 ± 0.11, 79% stage C). The patients were fitted with a wearable sensing patch and underwent treadmill CPX. We divided the dataset into a training-testing set (n = 44) and a separate validation set (n = 24). We developed globalized (population) regression models to estimate VO2 from the SCG and ECG signals measured continuously with the patch. We further classified the patients as stage D or C using the SCG and ECG features to assess the ability to detect clinical state from the wearable patch measurements alone. We developed the regression and classification model with cross-validation on the training-testing set and validated the models on the validation set. The regression model to estimate VO2 from the wearable features yielded a moderate correlation (R2 of 0.64) with a root mean square error of 2.51 ± 1.12 mL · kg-1 · min-1 on the training-testing set, whereas R2 and root mean square error on the validation set were 0.76 and 2.28 ± 0.93 mL · kg-1 · min-1, respectively. Furthermore, the classification of clinical state yielded accuracy, sensitivity, specificity, and an area under the receiver operating characteristic curve values of 0.84, 0.91, 0.64, and 0.74, respectively, for the training-testing set, and 0.83, 0.86, 0.67, and 0.92, respectively, for the validation set. CONCLUSIONS: Wearable SCG and ECG can assess CPX VO2 and thereby classify clinical status for patients with HF. These methods may provide value in the risk stratification of patients with HF by tracking cardiopulmonary parameters and clinical status outside of specialized settings, potentially allowing for more frequent assessments to be performed during longitudinal monitoring and treatment.


Subject(s)
Heart Failure , Wearable Electronic Devices , Exercise Test , Female , Heart Failure/diagnosis , Humans , Male , Middle Aged , Oxygen , Oxygen Consumption , Stroke Volume
2.
IEEE J Biomed Health Inform ; 24(7): 1887-1898, 2020 07.
Article in English | MEDLINE | ID: mdl-32175880

ABSTRACT

The seismocardiogram (SCG) measures the movement of the chest wall in response to underlying cardiovascular events. Though this signal contains clinically-relevant information, its morphology is both patient-specific and highly transient. In light of recent work suggesting the existence of population-level patterns in SCG signals, the objective of this study is to develop a method which harnesses these patterns to enable robust signal processing despite morphological variability. Specifically, we introduce seismocardiogram generative factor encoding (SGFE), which models the SCG waveform as a stochastic sample from a low-dimensional subspace defined by a unified set of generative factors. We then demonstrate that during dynamic processes such as exercise-recovery, learned factors correlate strongly with known generative factors including aortic opening (AO) and closing (AC), following consistent trajectories in subspace despite morphological differences. Furthermore, we found that changes in sensor location affect the perceived underlying dynamic process in predictable ways, thereby enabling algorithmic compensation for sensor misplacement during generative factor inference. Mapping these trajectories to AO and AC yielded R2 values from 0.81-0.90 for AO and 0.72-0.83 for AC respectively across five sensor positions. Identification of consistent behavior of SCG signals in low dimensions corroborates the existence of population-level patterns in these signals; SGFE may also serve as a harbinger for processing methods that are abstracted from the time domain, which may ultimately improve the feasibility of SCG utilization in ambulatory and outpatient settings.


Subject(s)
Heart Function Tests/methods , Signal Processing, Computer-Assisted , Adult , Algorithms , Aorta/physiology , Female , Humans , Male , Models, Cardiovascular , Vibration , Young Adult
3.
IEEE J Biomed Health Inform ; 24(7): 1899-1906, 2020 07.
Article in English | MEDLINE | ID: mdl-31940570

ABSTRACT

OBJECTIVE: Left ventricular assist devices (LVADs) fail in up to 10% of patients due to the development of pump thrombosis. Remote monitoring of patients with LVADs can enable early detection and, subsequently, treatment and prevention of pump thrombosis. We assessed whether acoustical signals measured on the chest of patients with LVADs, combined with machine learning algorithms, can be used for detecting pump thrombosis. METHODS: 13 centrifugal pump (HVAD) recipients were enrolled in the study. When hospitalized for suspected pump thrombosis, clinical data and acoustical recordings were obtained at admission, prior to and after administration of thrombolytic therapy, and every 24 hours until laboratory and pump parameters normalized. First, we selected the most important features among our feature set using LDH-based correlation analysis. Then using these features, we trained a logistic regression model and determined our decision threshold to differentiate between thrombosis and non-thrombosis episodes. RESULTS: Accuracy, sensitivity and precision were calculated to be 88.9%, 90.9% and 83.3%, respectively. When tested on the post-thrombolysis data, our algorithm suggested possible pump abnormalities that were not identified by the reference pump power or biomarker abnormalities. SIGNIFICANCE: We showed that the acoustical signatures of LVADs can be an index of mechanical deterioration and, when combined with machine learning algorithms, provide clinical decision support regarding the presence of pump thrombosis.


Subject(s)
Heart Sounds/physiology , Heart-Assist Devices/adverse effects , Signal Processing, Computer-Assisted , Thrombosis/diagnosis , Acoustics , Aged , Algorithms , Female , Humans , Male , Middle Aged , Sound Spectrography , Stethoscopes
4.
IEEE Trans Biomed Eng ; 67(4): 1019-1029, 2020 04.
Article in English | MEDLINE | ID: mdl-31295102

ABSTRACT

OBJECTIVE: We present a robust methodology for tracking ankle edema longitudinally based on bioimpedance spectroscopy (BIS). METHODS: We designed a miniaturized BIS measurement system and employed a novel calibration method that enables accurate, high-resolution measurements with substantially lower power consumption than conventional approaches. Using this state-of-the-art wearable BIS measurement system, we developed a differential measurement technique for robust assessment of ankle edema. This technique addresses many of the major challenges in longitudinal BIS-based edema assessment, including day-to-day variability in electrode placement, positional/postural variability, and intersubject variability. RESULTS: We first evaluated the hardware in bench-top testing, and determined the error of the bioimpedance measurements to be 0.4 Ω for the real components and 0.54 Ω for the imaginary components with a resolution of 0.2 Ω. We then validated the hardware and differential measurement technique in: 1) an ex vivo, fresh-frozen, cadaveric limb model, and 2) a cohort of 11 human subjects for proof of concept (eight healthy controls and five subjects with recently acquired acute unilateral ankle injury). CONCLUSION: The hardware design, with novel calibration methodology, and differential measurement technique can potentially enable long-term quantification of ankle edema throughout the course of rehabilitation following acute ankle injuries. SIGNIFICANCE: This could lead to better-informed decision making regarding readiness to return to activities and/or tailoring of rehabilitation activities to an individual's changing needs.


Subject(s)
Ankle , Wearable Electronic Devices , Edema/diagnosis , Electric Impedance , Humans , Spectrum Analysis
5.
IEEE J Biomed Health Inform ; 24(4): 1080-1092, 2020 04.
Article in English | MEDLINE | ID: mdl-31369387

ABSTRACT

The seismocardiogram (SCG) is a noninvasively-obtained cardiovascular bio-signal that has gained traction in recent years, however is limited by its susceptibility to noise and motion artifacts. Because of this, signal quality must be assured before data are used to inform clinical care. Common methods of signal quality assurance include signal classification or assignment of a numerical quality index. Such tasks are difficult with SCG because there is no accepted standard for signal morphology. In this paper, we propose a unified method of quality indexing and classification that uses multi-subject-based methods to overcome this challenge. Dynamic-time feature matching is introduced as a novel method of obtaining the distance between a signal and reference template, with this metric, the signal quality index (SQI) is defined as a function of the inverse distance between the SCG and a large set of template signals. We demonstrate that this method is able to stratify SCG signals on held-out subjects based on their level of motion-artifact corruption. This method is extended, using the SQI as a feature for classification by ensembled quadratic discriminant analysis. Classification is validated by demonstrating, for the first time, both detection and localization of SCG sensor misplacement, achieving an F1 score of 0.83 on held-out subjects. This paper may provide a necessary step toward automating the analysis of SCG signals, addressing many of the key limitations and concerns precluding the method from being widely used in clinical and physiological sensing applications.


Subject(s)
Heart Function Tests/methods , Signal Processing, Computer-Assisted , Adult , Algorithms , Female , Heart/physiology , Humans , Male , Young Adult
6.
IEEE J Biomed Health Inform ; 24(5): 1296-1309, 2020 05.
Article in English | MEDLINE | ID: mdl-31369391

ABSTRACT

The ballistocardiography (BCG) signal is a measurement of the vibrations of the center of mass of the body due to the cardiac cycle and can be used for noninvasive hemodynamic monitoring. The seismocardiography (SCG) signals measure the local vibrations of the chest wall due to the cardiac cycle. While BCG is a more well-known modality, it requires the use of a modified bathroom scale or a force plate and cannot be measured in a wearable setting, whereas SCG signals can be measured using wearable accelerometers placed on the sternum. In this paper, we explore the idea of finding a mapping between zero mean and unit l2-norm SCG and BCG signal segments such that, the BCG signal can be acquired using wearable accelerometers (without retaining amplitude information). We use neural networks to find such a mapping and make use of the recently introduced UNet architecture. We trained our models on 26 healthy subjects and tested them on ten subjects. Our results show that we can estimate the aforementioned segments of the BCG signal with a median Pearson correlation coefficient of 0.71 and a median absolute deviation (MAD) of 0.17. Furthermore, our model can estimate the R-I, R-J and R-K timing intervals with median absolute errors (and MAD) of 10.00 (8.90), 6.00 (5.93), and 8.00 (5.93), respectively. We show that using all three axis of the SCG accelerometer produces the best results, whereas the head-to-foot SCG signal produces the best results when a single SCG axis is used.


Subject(s)
Accelerometry/methods , Ballistocardiography/methods , Deep Learning , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Adult , Female , Heart Function Tests/methods , Humans , Male , Young Adult
7.
IEEE J Biomed Health Inform ; 23(6): 2365-2374, 2019 11.
Article in English | MEDLINE | ID: mdl-30703050

ABSTRACT

OBJECTIVE: Systolic time intervals, such as the pre-ejection period (PEP), are important parameters for assessing cardiac contractility that can be measured non-invasively using seismocardiography (SCG). Recent studies have shown that specific points on accelerometer- and gyroscope-based SCG signals can be used for PEP estimation. However, the complex morphology and inter-subject variation of the SCG signal can make this assumption very challenging and increase the root mean squared error (RMSE) when these techniques are used to develop a global model. METHODS: In this study, we compared gyroscope- and accelerometer-based SCG signals, individually and in combination, for estimating PEP to show the efficacy of these sensors in capturing valuable information regarding cardiovascular health. We extracted general time-domain features from all the axes of these sensors and developed global models using various regression techniques. RESULTS: In single-axis comparison of gyroscope and accelerometer, angular velocity signal around head to foot axis from the gyroscope provided the lowest RMSE of 12.63 ± 0.49 ms across all subjects. The best estimate of PEP, with a RMSE of 11.46 ± 0.32 ms across all subjects, was achieved by combining features from the gyroscope and accelerometer. Our global model showed 30% lower RMSE when compared to algorithms used in recent literature. CONCLUSION: Gyroscopes can provide better PEP estimation compared to accelerometers located on the mid-sternum. Global PEP estimation models can be improved by combining general time domain features from both sensors. SIGNIFICANCE: This work can be used to develop a low-cost wearable heart-monitoring device and to generate a universal estimation model for systolic time intervals using a single- or multiple-sensor fusion.


Subject(s)
Accelerometry/instrumentation , Heart Function Tests , Signal Processing, Computer-Assisted/instrumentation , Wearable Electronic Devices , Adult , Algorithms , Female , Heart/physiology , Heart Function Tests/instrumentation , Heart Function Tests/methods , Humans , Male , Monitoring, Physiologic , Young Adult
8.
IEEE Sens J ; 19(19): 8522-8531, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-33312073

ABSTRACT

Human-computer interaction (HCI) technology, and the automatic classification of a person's mental state, are of interest to multiple industries. In this work, the fusion of sensing modalities that monitor the oxygenation of the human prefrontal cortex (PFC) and cardiovascular physiology was evaluated to differentiate between rest, mental arithmetic and N-back memory tasks. A flexible headband to measure near-infrared spectroscopy (NIRS) for quantifying PFC oxygenation, and forehead photoplethysmography (PPG) for assessing peripheral cardiovascular activity was designed. Physiological signals such as the electrocardiogram (ECG) and seismocardiogram (SCG) were collected, along with the measurements obtained using the headband. The setup was tested and validated with a total of 16 human subjects performing a series of arithmetic and N-back memory tasks. Features extracted were related to cardiac and peripheral sympathetic activity, vasomotor tone, pulse wave propagation, and oxygenation. Machine learning techniques were utilized to classify rest, arithmetic, and N-back tasks, using leave-one-subject-out cross validation. Macro-averaged accuracy of 85%, precision of 84%, recall rate of 83%, and F1 score of 80% were obtained from the classification of the three states. Statistical analyses on the subject-based results demonstrate that the fusion of NIRS and peripheral cardiovascular sensing significantly improves the accuracy, precision, recall, and F1 scores, compared to using NIRS sensing alone. Moreover, the fusion significantly improves the precision compared to peripheral cardiovascular sensing alone. The results of this work can be used in the future to design a multi-modal wearable sensing system for classifying mental state for applications such as acute stress detection.

9.
IEEE Sens J ; 18(4): 1665-1674, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29867294

ABSTRACT

Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a non-invasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure (HF) patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using XGBoost with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.

10.
IEEE Trans Biomed Eng ; 65(6): 1291-1300, 2018 06.
Article in English | MEDLINE | ID: mdl-28858782

ABSTRACT

OBJECTIVE: To study knee acoustical emission patterns in subjects with acute knee injury immediately following injury and several months after surgery and rehabilitation. METHODS: We employed an unsupervised graph mining algorithm to visualize heterogeneity of the high-dimensional acoustical emission data, and then to derive a quantitative metric capturing this heterogeneity-the graph community factor (GCF). A total of 42 subjects participated in the studies. Measurements were taken once each from 33 healthy subjects with no known previous knee injury, and twice each from 9 subjects with unilateral knee injury: first, within seven days of the injury, and second, 4-6 months after surgery when the subjects were determined to start functional activities. Acoustical signals were processed to extract time and frequency domain features from multiple time windows of the recordings from both knees, and k-nearest neighbor graphs were then constructed based on these features. RESULTS: The GCF calculated from these graphs was found to be 18.5 ± 3.5 for healthy subjects, 24.8 ± 4.4 (p = 0.01) for recently injured, and 16.5 ± 4.7 (p = 0.01) at 4-6 months recovery from surgery. CONCLUSION: The objective GCF scores changes were consistent with a medical professional's subjective evaluations and subjective functional scores of knee recovery. SIGNIFICANCE: Unsupervised graph mining to extract GCF from knee acoustical emissions provides a novel, objective, and quantitative biomarker of knee injury and recovery that can be incorporated with a wearable joint health system for use outside of clinical settings, and austere/under resourced conditions, to aid treatment/therapy.


Subject(s)
Knee Joint/physiology , Signal Processing, Computer-Assisted , Sound Spectrography/methods , Adult , Algorithms , Biomarkers , Data Mining , Female , Health Status , Humans , Knee Injuries/physiopathology , Knee Injuries/rehabilitation , Male , Range of Motion, Articular/physiology , Wearable Electronic Devices , Young Adult
11.
J Appl Physiol (1985) ; 124(3): 537-547, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28751371

ABSTRACT

Knee injuries and chronic disorders, such as arthritis, affect millions of Americans, leading to missed workdays and reduced quality of life. Currently, after an initial diagnosis, there are few quantitative technologies available to provide sensitive subclinical feedback to patients regarding improvements or setbacks to their knee health status; instead, most assessments are qualitative, relying on patient-reported symptoms, performance during functional tests, and physical examinations. Recent advances have been made with wearable technologies for assessing the health status of the knee (and potentially other joints) with the goal of facilitating personalized rehabilitation of injuries and care for chronic conditions. This review describes our progress in developing wearable sensing technologies that enable quantitative physiological measurements and interpretation of knee health status. Our sensing system enables longitudinal quantitative measurements of knee sounds, swelling, and activity context during clinical and field situations. Importantly, we leverage machine-learning algorithms to fuse the low-level signal and feature data of the measured time series waveforms into higher level metrics of joint health. This paper summarizes the engineering validation, baseline physiological experiments, and human subject studies-both cross-sectional and longitudinal-that demonstrate the efficacy of using such systems for robust knee joint health assessment. We envision our sensor system complementing and advancing present-day practices to reduce joint reinjury risk, to optimize rehabilitation recovery time for a quicker return to activity, and to reduce health care costs.


Subject(s)
Knee Joint/physiology , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Biomarkers , Clinical Trials as Topic , Humans
12.
IEEE Sens J ; 18(22): 9128-9136, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31097924

ABSTRACT

In this paper, we present a pilot study evaluating novel methods for assessing joint health in patients with Juvenile Idiopathic Arthritis (JIA) using wearable acoustical emission measurements from the knees. Measurements were taken from four control subjects with no known knee injuries, and from four subjects with JIA, before and after treatment. Time and frequency domain features were extracted from the acoustical emission signals and used to compute a knee audio score. The score was used to separate out the two groups of subjects based solely on the sounds their joints produce. It was created using a soft classifier based on gradient boosting trees. The knee audio scores ranged from 0-1 with 0 being a healthy knee and 1 being an involved joint with arthritis. Leave-one-subject-out cross-validation (LOSO-CV) was used to validate the algorithm. The average of the right and left knee audio scores was 0.085±0.099 and 0.89±0.012 for the control group and group with JIA, respectively (p<0.05). The average knee audio score for the subjects with JIA decreased from 0.89±0.012 to 0.25±0.20 following successful treatment (p<0.05). The knee audio score metric successfully distinguished between the control subjects and subjects with JIA. The scores calculated before and after treatment accurately reflected the observed clinical course of the subjects with JIA. After successful treatment, the subjects with JIA were classified as healthy by the algorithm. Knee acoustical emissions provide a novel and cost-effective method for monitoring JIA, and can be used as an objective guide for assessing treatment efficacy.

13.
IEEE Trans Biomed Eng ; 64(10): 2353-2360, 2017 10.
Article in English | MEDLINE | ID: mdl-28026745

ABSTRACT

OBJECTIVE: We designed and validated a portable electrical bioimpedance (EBI) system to quantify knee joint health. METHODS: Five separate experiments were performed to demonstrate the: 1) ability of the EBI system to assess knee injury and recovery; 2) interday variability of knee EBI measurements; 3) sensitivity of the system to small changes in interstitial fluid volume; 4) reducing the error of EBI measurements using acceleration signals; and 5) use of the system with dry electrodes integrated to a wearable knee wrap. RESULTS: 1) The absolute difference in resistance ( R) and reactance (X) from the left to the right knee was able to distinguish injured and healthy knees (p < 0.05); the absolute difference in R decreased significantly (p < 0.05) in injured subjects following rehabilitation. 2) The average interday variability (standard deviation) of the absolute difference in knee R was 2.5 Ω and for X was 1.2 Ω. 3) Local heating/cooling resulted in a significant decrease/increase in knee R (p < 0.01). 4) The proposed subject position detection algorithm achieved 97.4% leave-one subject out cross-validated accuracy and 98.2% precision in detecting when the subject is in the correct position to take measurements. 5) Linear regression between the knee R and X measured using the wet electrodes and the designed wearable knee wrap were highly correlated ( R2 = 0.8 and 0.9, respectively). CONCLUSION: This study demonstrates the use of wearable EBI measurements in monitoring knee joint health. SIGNIFICANCE: The proposed wearable system has the potential for assessing knee joint health outside the clinic/lab and help guide rehabilitation.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Knee Injuries/diagnosis , Knee Injuries/physiopathology , Knee Joint/physiopathology , Plethysmography, Impedance/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
14.
IEEE J Biomed Health Inform ; 20(5): 1265-72, 2016 09.
Article in English | MEDLINE | ID: mdl-27305689

ABSTRACT

Knee-joint sounds could potentially be used to noninvasively probe the physical and/or physiological changes in the knee associated with rehabilitation following acute injury. In this paper, a system and methods for investigating the consistency of knee-joint sounds during complex motions in silent and loud background settings are presented. The wearable hardware component of the system consists of a microelectromechanical systems microphone and inertial rate sensors interfaced with a field programmable gate array-based real-time processor to capture knee-joint sound and angle information during three types of motion: flexion-extension (FE), sit-to-stand (SS), and walking (W) tasks. The data were post-processed to extract high-frequency and short-duration joint sounds (clicks) with particular waveform signatures. Such clicks were extracted in the presence of three different sources of interference: background, stepping, and rubbing noise. A histogram-vector Vn(→) was generated from the clicks in a motion-cycle n, where the bin range was 10°. The Euclidean distance between a vector and the arithmetic mean Vav(→) of all vectors in a recording normalized by the Vav(→) is used as a consistency metric dn. Measurements from eight healthy subjects performing FE, SS, and W show that the mean (of mean) consistency metric for all subjects during SS (µ [ µ (dn)] = 0.72 in silent, 0.85 in loud) is smaller compared with the FE (µ [ µ (dn)] = 1.02 in silent, 0.95 in loud) and W ( µ [ µ (dn)] = 0.94 in silent, 0.97 in loud) exercises, thereby implying more consistent click-generation during SS compared with the FE and W. Knee-joint sounds from one subject performing FE during five consecutive work-days (µ [ µ (dn) = 0.72) and five different times of a day (µ [ µ (dn) = 0.73) suggests high consistency of the clicks on different days and throughout a day. This work represents the first time, to the best of our knowledge, that joint sound consistency has been quantified in ambulatory subjects performing every-day activities (e.g., SS, walking). Moreover, it is demonstrated that noise inherent with joint-sound recordings during complex motions in uncontrolled settings does not prevent joint-sound-features from being detected successfully.


Subject(s)
Knee Joint/physiology , Knee/physiology , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Signal Processing, Computer-Assisted , Acoustics , Adult , Algorithms , Auscultation , Equipment Design , Female , Humans , Male , Monitoring, Ambulatory/standards , Walking/physiology , Young Adult
15.
IEEE Trans Biomed Eng ; 63(8): 1581-90, 2016 08.
Article in English | MEDLINE | ID: mdl-27008656

ABSTRACT

OBJECTIVE: We present the framework for wearable joint rehabilitation assessment following musculoskeletal injury. We propose a multimodal sensing (i.e., contact based and airborne measurement of joint acoustic emission) system for at-home monitoring. METHODS: We used three types of microphones-electret, MEMS, and piezoelectric film microphones-to obtain joint sounds in healthy collegiate athletes during unloaded flexion/extension, and we evaluated the robustness of each microphone's measurements via: 1) signal quality and 2) within-day consistency. RESULTS: First, air microphones acquired higher quality signals than contact microphones (signal-to-noise-and-interference ratio of 11.7 and 12.4 dB for electret and MEMS, respectively, versus 8.4 dB for piezoelectric). Furthermore, air microphones measured similar acoustic signatures on the skin and 5 cm off the skin (∼4.5× smaller amplitude). Second, the main acoustic event during repetitive motions occurred at consistent joint angles (intra-class correlation coefficient ICC(1, 1) = 0.94 and ICC(1, k) = 0.99). Additionally, we found that this angular location was similar between right and left legs, with asymmetry observed in only a few individuals. CONCLUSION: We recommend using air microphones for wearable joint sound sensing; for practical implementation of contact microphones in a wearable device, interface noise must be reduced. Importantly, we show that airborne signals can be measured consistently and that healthy left and right knees often produce a similar pattern in acoustic emissions. SIGNIFICANCE: These proposed methods have the potential for enabling knee joint acoustics measurement outside the clinic/lab and permitting long-term monitoring of knee health for patients rehabilitating an acute knee joint injury.


Subject(s)
Auscultation/instrumentation , Knee Joint/physiopathology , Monitoring, Ambulatory/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Adult , Biomechanical Phenomena/physiology , Humans , Male , Prosthesis Design , Young Adult
16.
IEEE Trans Biomed Circuits Syst ; 10(3): 545-55, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26841413

ABSTRACT

We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm(2) and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life.


Subject(s)
Biosensing Techniques/instrumentation , Edema/physiopathology , Knee Joint/physiopathology , Algorithms , Electric Impedance , Hemodynamics , Humans
17.
IEEE Trans Biomed Circuits Syst ; 10(2): 280-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25974943

ABSTRACT

We present a low power multi-modal patch designed for measuring activity, altitude (based on high-resolution barometric pressure), a single-lead electrocardiogram, and a tri-axial seismocardiogram (SCG). Enabled by a novel embedded systems design methodology, this patch offers a powerful means of monitoring the physiology for both patients with chronic cardiovascular diseases, and the general population interested in personal health and fitness measures. Specifically, to the best of our knowledge, this patch represents the first demonstration of combined activity, environmental context, and hemodynamics monitoring, all on the same hardware, capable of operating for longer than 48 hours at a time with continuous recording. The three-channels of SCG and one-lead ECG are all sampled at 500 Hz with high signal-to-noise ratio, the pressure sensor is sampled at 10 Hz, and all signals are stored to a microSD card with an average current consumption of less than 2 mA from a 3.7 V coin cell (LIR2450) battery. In addition to electronic characterization, proof-of-concept exercise recovery studies were performed with this patch, suggesting the ability to discriminate between hemodynamic and electrophysiology response to light, moderate, and heavy exercise.


Subject(s)
Electrocardiography/instrumentation , Kinetocardiography/instrumentation , Electric Power Supplies , Equipment Design , Exercise/physiology , Hemodynamics , Humans
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3113-3116, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268969

ABSTRACT

An algorithm for performing activity classification for a joint health assessment system using acoustical emissions from the knee is presented. The algorithm was refined based on linear acceleration data from the shank and the thigh sampled at 100 Hz/ch and collected from eight healthy subjects performing unloaded flexion-extension and sit-to-stand motions. The algorithm was implemented on a field-programmable gate array (FPGA)-based processor and has been validated in realtime on a subject performing two minutes of activities consisting of flexion-extension, sit-to-stand, and other motions while standing. When an activity is detected, the algorithm generates an enable signal for high throughput data acquisition of knee joint sounds using two airborne microphones (100 kHz/ch) and two single-axis gyroscope and accelerometer pairs (1 kHz/ch). This approach can facilitate energy-efficient recording of joint sound signatures in the context of flexion-extension and sit-to-stand activities from freely-moving subjects throughout the day, potentially providing a means of evaluating rehabilitation status, for example, following acute knee injury.


Subject(s)
Knee Joint/physiology , Monitoring, Physiologic/instrumentation , Signal Processing, Computer-Assisted , Sound , Adult , Algorithms , Biomechanical Phenomena , Humans , Male , Movement , Posture , Time Factors , Young Adult
19.
Article in English | MEDLINE | ID: mdl-26736951

ABSTRACT

In this study, a non-invasive and active sensing scheme that is ultimately aimed to be integrated in a wearable system for neuro-vascular health assessment is presented with preliminary results. With this system, vascular tone is modulated by local heating and cooling of the palm, and the resulting changes in local hemodynamics are monitored via impedance plethysmography (IPG) and photoplethysmography (PPG) sensors interfaced with custom analog electronics. Proof-of-concept measurements were conducted on three subjects using hot packs/ice bags to modulate the palmar skin temperature. From ensemble averaged and smoothed versions of pulsatile IPG and PPG signals, the effects of local changes in skin temperature on a series of parameters associated with neuro-vascular mechanisms (heart rate, blood volume, blood flow rate, blood volume pulse inflection point area ratio, and local pulse transit time) have been observed. The promising experimental results suggest that, with different active temperature modulation schemes (consisting of heating/cooling cycles covering different temperature ranges at different rates), it would be possible to enhance the depth and specificity of the information associated with neuro-vascular health by using biosensors that can fit inside a wearable device (such as a sleeve). This study sets the foundation for future studies on designing and testing such a wearable neuro-vascular health assessment system employing active sensing.


Subject(s)
Nervous System/blood supply , Neurophysiology/instrumentation , Neurophysiology/methods , Adult , Algorithms , Electric Impedance , Female , Heart Rate/physiology , Humans , Photoplethysmography , Pulse Wave Analysis , Signal Processing, Computer-Assisted , Skin Temperature , Young Adult
20.
Article in English | MEDLINE | ID: mdl-25571162

ABSTRACT

Heart failure (HF) is an escalating public health problem, with few effective methods for home monitoring. In HF management, the important clinical factors to monitor include symptoms, fluid status, cardiac output, and blood pressure--based on these factors, inotrope and diuretic dosages are adjusted day-by-day to control the disorder and improve the patient's status towards a successful discharge. Previously, the ballistocardiogram (BCG) measured on a weighing scale has been shown to be capable of detecting changes in cardiac output and contractility for healthy subjects. In this study, we investigated whether the BCG and electrocardiogram (ECG) signals measured on a wireless modified scale could accurately track the clinical status of HF patients during their hospital stay. Using logistic regression, we found that the root-mean-square (RMS) power of the BCG provided a good fit for clinical status, as determined based on clinical measurements and symptoms, for the 85 patient days studied from 10 patients (p < 0.01). These results provide a promising foundation for future studies aimed at using the BCG/ECG scale at home to track HF patient status remotely.


Subject(s)
Ballistocardiography , Electrocardiography , Heart Failure/diagnosis , Monitoring, Physiologic/methods , Signal Processing, Computer-Assisted , Wireless Technology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL