Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 80: 129120, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36587872

ABSTRACT

GPR88 is an orphan G protein-coupled receptor which has been implicated in a number of striatal-associated disorders. Herein we describe the synthesis and pharmacological characterization of the first GPR88 radioligand, [3H]RTI-33, derived from a synthetic agonist RTI-13951-33. [3H]RTI-33 has a specific activity of 83.4 Ci/mmol and showed one-site, saturable binding (KD of 85 nM) in membranes prepared from stable PPLS-HA-hGPR88-CHO cells. A competition binding assay was developed to determine binding affinities of several known GPR88 agonists. This radioligand represents a powerful tool for future mechanistic and cell-based ligand-receptor interaction studies of GPR88.


Subject(s)
Carrier Proteins , Receptors, G-Protein-Coupled , Cricetinae , Animals , Cricetulus , Receptors, G-Protein-Coupled/agonists , Radioligand Assay
2.
ACS Chem Neurosci ; 13(7): 1082-1095, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35325532

ABSTRACT

Human trace amine-associated receptor subtype 1 (hTAAR1) is a G protein-coupled receptor that has therapeutic potential for multiple diseases, including schizophrenia, drug addiction, and Parkinson's disease (PD). Although several potent agonists have been identified and have shown positive results in various clinical trials for schizophrenia, the discovery of potent hTAAR1 antagonists remains elusive. Herein, we report the results of structure-activity relationship studies that have led to the discovery of a potent hTAAR1 antagonist (RTI-7470-44, 34). RTI-7470-44 exhibited an IC50 of 8.4 nM in an in vitro cAMP functional assay, a Ki of 0.3 nM in a radioligand binding assay, and showed species selectivity for hTAAR1 over the rat and mouse orthologues. RTI-7470-44 displayed good blood-brain barrier permeability, moderate metabolic stability, and a favorable preliminary off-target profile. Finally, RTI-7470-44 increased the spontaneous firing rate of mouse VTA dopaminergic neurons and blocked the effects of the known TAAR1 agonist RO5166017. Collectively, this work provides a promising hTAAR1 antagonist probe that can be used to study TAAR1 pharmacology and the potential therapeutic role in hypodopaminergic diseases such as PD.


Subject(s)
Dopaminergic Neurons , Receptors, G-Protein-Coupled , Animals , Dopaminergic Neurons/metabolism , Humans , Mice , Rats , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
3.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35020407

ABSTRACT

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/diagnostic imaging , Animals , Humans , Macaca mulatta , Positron-Emission Tomography/methods , Receptors, Muscarinic
4.
Nature ; 589(7843): 542-547, 2021 01.
Article in English | MEDLINE | ID: mdl-33238289

ABSTRACT

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.


Subject(s)
Chemistry Techniques, Synthetic , Ligands , Photochemical Processes , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Alkylation , Carbon Radioisotopes/chemistry , Glipizide/analogs & derivatives , Glipizide/chemistry , Methylation , Oxidation-Reduction
5.
J Labelled Comp Radiopharm ; 63(6): 246, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32330319
6.
J Med Chem ; 63(5): 2411-2425, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32101422

ABSTRACT

The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884.


Subject(s)
Allosteric Regulation/drug effects , Muscarinic Agonists/pharmacology , Pyridines/pharmacology , Receptor, Muscarinic M4/agonists , Animals , CHO Cells , Carbon Radioisotopes/chemistry , Carbon Radioisotopes/pharmacology , Cricetulus , Humans , Macaca mulatta , Muscarinic Agonists/chemistry , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Positron-Emission Tomography , Pyridines/chemistry , Receptor, Muscarinic M4/metabolism
7.
J Labelled Comp Radiopharm ; 63(4): 196-202, 2020 04.
Article in English | MEDLINE | ID: mdl-32017204

ABSTRACT

[3 H]Genipin was synthesized in a single step by Ir(I) catalyzed hydrogen isotope exchange. Conditions for selective exchange of the sp2 CH bond ortho to the methyl ester functionality were developed through deuterium modeling studies through a catalyst screen. Optimized conditions so obtained were then utilized with tritium gas to generate [3 H]genipin at a specific activity of 18.5 Ci/mmol. Racemic [14 C]genipin was prepared in eight steps in overall 5.4% radiochemical yield from potassium [14 C]cyanide.


Subject(s)
Carbon Radioisotopes/chemistry , Iridoids/chemistry , Iridoids/chemical synthesis , Tritium/chemistry , Catalysis , Chemistry Techniques, Synthetic , Iridium/chemistry , Isotope Labeling , Radiochemistry
8.
J Labelled Comp Radiopharm ; 63(6): 296-307, 2020 05 30.
Article in English | MEDLINE | ID: mdl-31950546

ABSTRACT

Hydrogen isotope exchange (HIE) has played an increasingly important role in deuteration and tritiation of compounds in the pharmaceutical industry. Transition metal-catalyzed HIE methods have gained considerable attention in the past decades, and most of these methods were comprehensively reviewed in 2010 in a special JLCR issue. It covered a wide variety of HIE catalysis systems involving precious metal catalysts, and a relatively small percentage of base metal catalysts, with a major focus on heterogeneous nickel. While base metal catalysts have remained underdeveloped for HIE chemistry relative to second and third row transition metal catalysts, in recent years, the first examples of homogeneous iron, nickel, and cobalt catalysts have been introduced to the field. Hence, in this review, we describe the recent development of base metal catalysts for HIE and their applications in isotopic labeling of pharmaceutical compounds. These research efforts have resulted in the development of labeling approaches that complement traditional methods in terms of activity and selectivity, thus diversifying the methodologies available for isotope chemists.


Subject(s)
Hydrogen/chemistry , Isotopes/chemistry , Metals/chemistry , Catalysis
9.
J Labelled Comp Radiopharm ; 63(6): 247-265, 2020 05 30.
Article in English | MEDLINE | ID: mdl-31410875

ABSTRACT

The highlights of C (sp2 )-H hydrogen isotope exchange (HIE) methods developed over the past 10 years are summarized in this review. Major developments include improved Ir(I) catalysts with greater functional group and solvent compatibility and the development of novel base metal catalysts for HIE. In addition, a number of novel Ru-based catalysts have been developed with promising activity. In the area of Pt- and Pd-catalysed exchange, in addition to new advances on heterogeneous Pt- and Pd-catalysed HIE by Sajiki and Shevchenko, a number of groups have reported on homogenous catalysts of Pt and Pd that show an interesting activity and selectivity.


Subject(s)
Hydrogen/chemistry , Isotopes/chemistry , Catalysis
10.
Mol Pharm ; 16(6): 2579-2589, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31021639

ABSTRACT

Molecular interactions between the active pharmaceutical ingredient and polymer have potentially substantial impacts on the physical stability of amorphous solid dispersions (ASDs), presumably by manipulating molecular mobility and miscibility. However, structural details for understanding the nature of the molecular contacts and mechanistic roles in various physicochemical and thermodynamic events often remain unclear. This study provides a spectroscopic characterization of posaconazole (POSA) formulations, a second-generation triazole antifungal drug (Noxafil, Merck & Co., Inc., Kenilworth, NJ, USA), at molecular resolution. One- and two-dimensional (2D) solid-state NMR (ssNMR) techniques including spectral editing, heteronuclear 1H-13C, 19F-13C, 15N-13C, and 19F-1H polarization transfer, and spin correlation and ultrafast magic angle spinning, together with the isotopic labeling strategy, were utilized to uncover molecular details in POSA ASDs in a site-specific manner. Active groups in triazole and difluorophenyl rings exhibited rich but distinct categories of interactions with two polymers, hypromellose acetate succinate and hypromellose phthalate, including intermolecular O-H···O═C and O-H···F-C hydrogen bonding, π-π aromatic packing, and electrostatic interaction. Interestingly, the chlorine-to-fluorine substituent in POSA, one of the major structural differences from itraconazole that could facilitate binding to the biological target, offers an additional contact with the polymer. These findings exhibit 2D ssNMR as a sensitive technique for probing sub-nanometer structures of pharmaceutical materials and provide a structural basis for optimizing the type and strength of drug-polymer interactions in the design of amorphous formulations.


Subject(s)
Carbon/chemistry , Colloids/chemistry , Triazoles/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy
11.
J Labelled Comp Radiopharm ; 62(11): 690-694, 2019 09.
Article in English | MEDLINE | ID: mdl-31034626

ABSTRACT

The International Consortium for Innovation & Quality (IQ) in Pharmaceutical Development recently established a working group focused on the development of a guidance to address Deuterated Active Pharmaceutical Ingredients. Deuteration of an Active Pharmaceutical Ingredient (API) in some cases can retard and/or alter API metabolism by exploiting the primary kinetic isotope effect. Several deuterated APIs have entered into the clinic, and one has recently been approved. In most cases, it is very difficult to nearly impossible to synthesize a 100% isotopically pure compound. This raises synthetic, analytical, and regulatory questions that warrant a science-based assessment and recommendations for synthetic methods, analytical methods, and specifications. A cross functional team of scientists with expertise in isotope chemistry, process chemistry, analytical chemistry, and drug metabolism and pharmacokinetics have been meeting under the auspices of IQ to define and address these questions. This paper strives to frame chemistry, manufacturing, and controls challenges.


Subject(s)
Deuterium/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Chemistry Techniques, Synthetic , Terminology as Topic
12.
J Am Chem Soc ; 141(12): 5034-5044, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30827090

ABSTRACT

The synthesis and spectroscopic characterization of a family of Ni-X (X = Cl, Br, I, H) complexes supported by the bulky α-diimine chelate N, N'-bis(1 R,2 R,3 R,5 S)-(-)-isopinocampheyl-2,3-butanediimine (ipcADI) are described. Diimine-supported, three-coordinate nickel(I)-X complexes have been proposed as key intermediates in a host of catalytic transformations such as C-C and C-heteroatom cross-coupling and C-H functionalization but have until now remained synthetically elusive. A combination of structural, spectroscopic, electrochemical, and computational studies were used to establish the electronic structure of each monomeric [(ipcADI)NiX] (X = Cl, Br, I) complex as a nickel(I) derivative supported by a redox-neutral α-diimine chelate. The dimeric nickel hydride, [(ipcADI)Ni(µ2-H)]2, was prepared and characterized by X-ray diffraction; however, magnetic measurements and 1H NMR spectroscopy support monomer formation at ambient temperature in THF solution. This nickel hydride was used as a precatalyst for the hydrogen isotope exchange (HIE) of C-H bonds in arenes and pharmaceuticals. By virtue of the multisite reactivity and high efficiency, the new nickel precatalyst provided unprecedented high specific activities (50-99 Ci/mmol) in radiolabeling, meeting the threshold required for radioligand binding assays. Use of air-stable and readily synthesized nickel precursor, [(ipcADI)NiBr2], broad functional group tolerance, and compatibility with polar protic solvents are additional assets of the nickel-catalyzed HIE method.


Subject(s)
Halogens/chemistry , Hydrogen/chemistry , Imines/chemistry , Nickel/chemistry , Pharmaceutical Preparations/chemistry , Catalysis , Chemistry Techniques, Synthetic , Isotopes/chemistry , Ligands , Models, Molecular , Molecular Conformation
13.
ACS Med Chem Lett ; 9(7): 761-767, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034615

ABSTRACT

The emergence and evolution of new immunological cancer therapies has sparked a rapidly growing interest in discovering novel pathways to treat cancer. Toward this aim, a novel series of pyrrolidine derivatives (compound 5) were identified as potent inhibitors of ERK1/2 with excellent kinase selectivity and dual mechanism of action but suffered from poor pharmacokinetics (PK). The challenge of PK was overcome by the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 7. Lead optimization through focused structure-activity relationship led to the discovery of a clinical candidate MK-8353 suitable for twice daily oral dosing as a potential new cancer therapeutic.

14.
Bioorg Med Chem Lett ; 28(11): 2029-2034, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29748051

ABSTRACT

Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 µM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 µM h; F% = 70).


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Chemistry ; 24(28): 7133-7136, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29604145

ABSTRACT

The synthesis of stable isotope labeled (SIL) complex drug molecules with a ≥3 mass unit increase from the parent compound is essential for drug discovery and development. Typical approaches that rely on 2 H, 13 C, and 15 N isotopes can be very challenging or even intractable, and can delay the drug development process. This work introduces a new concept for the synthesis of labeled compounds that relies on the use of 34 S. The synthetic utility of 34 S was demonstrated with the efficient synthesis of [34 S]phosphorothioates [34 S2 ]-PS-ODNs-TTT and [13 C, 15 N, 34 S]-ceftolozane. In addition, a procedure for the direct oxidation of phosphites to [34 S]phosphorothioates using elemental 34 S without isotope dilution was developed.


Subject(s)
Isotope Labeling/methods , Isotopes/chemical synthesis , Drug Discovery , Isotopes/chemistry , Oxidation-Reduction
16.
J Am Chem Soc ; 140(6): 1990-1993, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29377684

ABSTRACT

Methods to incorporate deuterium and tritium atoms into organic molecules are valuable for medicinal chemistry. The prevalence of pyridines and diazines in pharmaceuticals means that new ways to label these heterocycles will present opportunities in drug design and facilitate absorption, distribution, metabolism, and excretion (ADME) studies. A broadly applicable protocol is presented wherein pyridines, diazines, and pharmaceuticals are converted into heterocyclic phosphonium salts and then isotopically labeled. The isotopes are incorporated in high yields and, in general, with exclusive regioselectivity.


Subject(s)
Deuterium/chemistry , Heterocyclic Compounds/chemistry , Pharmaceutical Preparations/chemistry , Pyridines/chemistry , Tritium/chemistry , Isotope Labeling/methods , Organophosphorus Compounds/chemistry , Stereoisomerism
17.
Science ; 358(6367): 1182-1187, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29123019

ABSTRACT

Deuterium- and tritium-labeled pharmaceutical compounds are pivotal diagnostic tools in drug discovery research, providing vital information about the biological fate of drugs and drug metabolites. Herein we demonstrate that a photoredox-mediated hydrogen atom transfer protocol can efficiently and selectively install deuterium (D) and tritium (T) at α-amino sp3 carbon-hydrogen bonds in a single step, using isotopically labeled water (D2O or T2O) as the source of hydrogen isotope. In this context, we also report a convenient synthesis of T2O from T2, providing access to high-specific-activity T2O. This protocol has been successfully applied to the high incorporation of deuterium and tritium in 18 drug molecules, which meet the requirements for use in ligand-binding assays and absorption, distribution, metabolism, and excretion studies.


Subject(s)
Deuterium/chemistry , Pharmaceutical Preparations/chemistry , Tritium/chemistry , Carbon/chemistry , Catalysis , Deuterium Oxide/chemistry , Hydrogen Bonding , Isotope Labeling , Ligands , Oxidation-Reduction , Photochemical Processes , Water/chemistry
18.
Anal Biochem ; 518: 9-15, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27815077

ABSTRACT

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore ß-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.


Subject(s)
Mass Spectrometry/methods , Methicillin-Resistant Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Chromatography, Liquid/methods , Methicillin-Resistant Staphylococcus aureus/chemistry , Teichoic Acids/chemistry , Tunicamycin/pharmacology
19.
J Labelled Comp Radiopharm ; 59(14): 594-600, 2016 12.
Article in English | MEDLINE | ID: mdl-27696492
SELECTION OF CITATIONS
SEARCH DETAIL