Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 143(4): 1127-1142, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32293668

ABSTRACT

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Subject(s)
4-Aminopyridine/pharmacology , Multiple Sclerosis/pathology , Neuroprotective Agents/pharmacology , Optic Neuritis/pathology , Retinal Degeneration/pathology , Adult , Aged , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neural Stem Cells/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar
2.
J Neuroinflammation ; 15(1): 71, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29514678

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. METHODS: Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG35-55-induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. RESULTS: All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. CONCLUSIONS: A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Nerve Degeneration/prevention & control , Retina/pathology , Thioctic Acid/therapeutic use , Vision Disorders/prevention & control , Vitamin B Complex/therapeutic use , Animals , CD3 Complex/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/complications , Female , Glutathione/metabolism , Mice , Mice, Inbred C57BL , Myelin Basic Protein/metabolism , Nerve Degeneration/etiology , Nystagmus, Optokinetic/physiology , Protein Carbonylation/physiology , Tomography, Optical Coherence , Vision Disorders/etiology
3.
J Neurosci ; 36(14): 3890-902, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27053198

ABSTRACT

Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/ß(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3ß, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/ß(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/ß(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT: Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.


Subject(s)
Microtubules/drug effects , Microtubules/metabolism , Nerve Regeneration/drug effects , Tyrosine/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Axons/metabolism , Dose-Response Relationship, Drug , Gene Knock-In Techniques , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Mice , Mice, Inbred C57BL , Nocodazole/pharmacology , Paclitaxel/pharmacology , Peripheral Nerves/drug effects , Peripheral Nerves/growth & development , Phosphorylation , Sciatic Nerve/pathology , Sesquiterpenes/pharmacology
4.
Neurobiol Dis ; 55: 76-86, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23578489

ABSTRACT

Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.


Subject(s)
Chemokine CXCL12/pharmacology , Nerve Regeneration/drug effects , Retinal Ganglion Cells/drug effects , Animals , Cells, Cultured , Chemokine CXCL12/therapeutic use , Ciliary Neurotrophic Factor/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , GAP-43 Protein/metabolism , Nerve Crush/adverse effects , Neurites/drug effects , Neurites/enzymology , Optic Nerve Diseases/drug therapy , Optic Nerve Diseases/physiopathology , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/cytology , Signal Transduction/drug effects , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...