Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(6)2023 12 01.
Article in English | MEDLINE | ID: mdl-37988748

ABSTRACT

Objective.This paper presents a novel domain adaptation (DA) framework to enhance the accuracy of electroencephalography (EEG)-based auditory attention classification, specifically for classifying the direction (left or right) of attended speech. The framework aims to improve the performances for subjects with initially low classification accuracy, overcoming challenges posed by instrumental and human factors. Limited dataset size, variations in EEG data quality due to factors such as noise, electrode misplacement or subjects, and the need for generalization across different trials, conditions and subjects necessitate the use of DA methods. By leveraging DA methods, the framework can learn from one EEG dataset and adapt to another, potentially resulting in more reliable and robust classification models.Approach.This paper focuses on investigating a DA method, based on parallel transport, for addressing the auditory attention classification problem. The EEG data utilized in this study originates from an experiment where subjects were instructed to selectively attend to one of the two spatially separated voices presented simultaneously.Main results.Significant improvement in classification accuracy was observed when poor data from one subject was transported to the domain of good data from different subjects, as compared to the baseline. The mean classification accuracy for subjects with poor data increased from 45.84% to 67.92%. Specifically, the highest achieved classification accuracy from one subject reached 83.33%, a substantial increase from the baseline accuracy of 43.33%.Significance.The findings of our study demonstrate the improved classification performances achieved through the implementation of DA methods. This brings us a step closer to leveraging EEG in neuro-steered hearing devices.


Subject(s)
Electroencephalography , Speech Perception , Humans , Acoustic Stimulation/methods , Electroencephalography/methods , Noise , Attention
2.
Front Hum Neurosci ; 17: 1129362, 2023.
Article in English | MEDLINE | ID: mdl-37441434

ABSTRACT

Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil).

3.
Front Hum Neurosci ; 16: 931085, 2022.
Article in English | MEDLINE | ID: mdl-35874164

ABSTRACT

The multi-armed bandit (MAB) problem models a decision-maker that optimizes its actions based on current and acquired new knowledge to maximize its reward. This type of online decision is prominent in many procedures of Brain-Computer Interfaces (BCIs) and MAB has previously been used to investigate, e.g., what mental commands to use to optimize BCI performance. However, MAB optimization in the context of BCI is still relatively unexplored, even though it has the potential to improve BCI performance during both calibration and real-time implementation. Therefore, this review aims to further describe the fruitful area of MABs to the BCI community. The review includes a background on MAB problems and standard solution methods, and interpretations related to BCI systems. Moreover, it includes state-of-the-art concepts of MAB in BCI and suggestions for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...