Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398210

ABSTRACT

The genetic principle of synthetic lethality is clinically validated in cancers with loss of specific DNA damage response (DDR) pathway genes (i.e. BRCA1/2 tumor suppressor mutations). The broader question of whether and how oncogenes create tumor-specific vulnerabilities within DDR networks remains unanswered. Native FET protein family members are among the earliest proteins recruited to DNA double-strand breaks (DSBs) during the DDR, though the function of both native FET proteins and FET fusion oncoproteins in DSB repair remains poorly defined. Here we focus on Ewing sarcoma (ES), an EWS-FLI1 fusion oncoprotein-driven pediatric bone tumor, as a model for FET rearranged cancers. We discover that the EWS-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native EWS function in activating the DNA damage sensor ATM. Using preclinical mechanistic approaches and clinical datasets, we establish functional ATM deficiency as a principal DNA repair defect in ES and the compensatory ATR signaling axis as a collateral dependency and therapeutic target in FET rearranged cancers. Thus, aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt normal DSB repair, revealing a mechanism for how oncogenes can create cancer-specific synthetic lethality within DDR networks.

2.
bioRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37205599

ABSTRACT

While oncogenes promote cancer cell growth, unrestrained proliferation represents a significant stressor to cellular homeostasis networks such as the DNA damage response (DDR). To enable oncogene tolerance, many cancers disable tumor suppressive DDR signaling through genetic loss of DDR pathways and downstream effectors (e.g., ATM or p53 tumor suppressor mutations). Whether and how oncogenes can help "self-tolerize" by creating analogous functional deficiencies in physiologic DDR networks is not known. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWS-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET protein family members are among the earliest factors recruited to DNA double-strand breaks (DSBs) during the DDR, though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. Using preclinical mechanistic studies of the DDR and clinical genomic datasets from patient tumors, we discover that the EWS-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native FET (EWS) protein function in activating the DNA damage sensor ATM. As a consequence of FET fusion-mediated interference with the DDR, we establish functional ATM deficiency as the principal DNA repair defect in Ewing sarcoma and the compensatory ATR signaling axis as a collateral dependency and therapeutic target in multiple FET rearranged cancers. More generally, we find that aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt physiologic DSB repair, revealing a mechanism for how growth-promoting oncogenes can also create a functional deficiency within tumor suppressive DDR networks.

3.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33848463

ABSTRACT

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Subject(s)
Biomolecular Condensates/metabolism , Cytoplasmic Granules/metabolism , Neoplasms/metabolism , Oncogene Proteins, Fusion/metabolism , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , HEK293 Cells , Humans , SOS1 Protein/metabolism , Signal Transduction
4.
Chem Biol ; 22(10): 1394-405, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26496688

ABSTRACT

We are exposed to a growing number of chemicals in our environment, most of which have not been characterized in terms of their toxicological potential or mechanisms. Here, we employ a chemoproteomic platform to map the cysteine reactivity of environmental chemicals using reactivity-based probes to mine for hyper-reactive hotspots across the proteome. We show that environmental contaminants such as monomethylarsonous acid and widely used pesticides such as chlorothalonil and chloropicrin possess common reactivity with a distinct set of proteins. Many of these proteins are involved in key metabolic processes, suggesting that these targets may be particularly sensitive to environmental electrophiles. We show that the widely used fungicide chlorothalonil specifically inhibits several metabolic enzymes involved in fatty acid metabolism and energetics, leading to dysregulated lipid metabolism in mice. Our results underscore the utility of using reactivity-based chemoproteomic platforms to uncover novel mechanistic insights into the toxicity of environmental chemicals.


Subject(s)
Environmental Pollutants/toxicity , Proteome/drug effects , Toxicity Tests/methods , Animals , Carnitine O-Palmitoyltransferase/metabolism , Chromosome Mapping , Click Chemistry , Humans , Kidney/chemistry , Kidney/drug effects , Kidney/enzymology , Metabolome , Mice , Proteome/chemistry , Proteome/genetics
5.
ACS Chem Biol ; 9(5): 1097-103, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24597639

ABSTRACT

Humans are prevalently exposed to organophosphorus flame retardants (OPFRs) contained in consumer products and electronics, though their toxicological effects and mechanisms remain poorly understood. We show here that OPFRs inhibit specific liver carboxylesterases (Ces) and cause altered hepatic lipid metabolism. Ablation of the OPFR target Ces1g has been previously linked to dyslipidemia in mice. Consistent with OPFR inhibition of Ces1g, we also observe OPFR-induced serum hypertriglyceridemia in mice. Our findings suggest novel toxicities that may arise from OPFR exposure and highlight the utility of chemoproteomic and metabolomic platforms in the toxicological characterization of environmental chemicals.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Flame Retardants/toxicity , Hypertriglyceridemia/blood , Hypertriglyceridemia/chemically induced , Liver/enzymology , Organophosphorus Compounds/toxicity , Animals , Carboxylic Ester Hydrolases/metabolism , HEK293 Cells , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Mice
6.
ACS Chem Biol ; 9(2): 423-32, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24205821

ABSTRACT

We are environmentally exposed to countless synthetic chemicals on a daily basis, with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of using multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals.


Subject(s)
Metabolome/drug effects , Organophosphorus Compounds/metabolism , Pesticides/metabolism , Proteome/metabolism , Animals , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Proteome/antagonists & inhibitors , Proteomics , Serine Proteases/metabolism , Serine Proteinase Inhibitors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...