Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Elife ; 132024 May 16.
Article in English | MEDLINE | ID: mdl-38752835

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Subject(s)
Hibernation , Animals , Hibernation/physiology , Energy Metabolism , Skeletal Muscle Myosins/metabolism , Ursidae/metabolism , Ursidae/physiology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics
2.
Commun Biol ; 7(1): 648, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802450

ABSTRACT

In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.


Subject(s)
Carrier Proteins , Mice, Knockout , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , Sarcomeres/metabolism , Myofibrils/metabolism , Myofibrils/genetics , Muscle, Skeletal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Male , Myosins/metabolism , Myosins/genetics
3.
Nat Commun ; 15(1): 2628, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521794

ABSTRACT

Muscle contraction is produced via the interaction of myofilaments and is regulated so that muscle performance matches demand. Myosin-binding protein C (MyBP-C) is a long and flexible protein that is tightly bound to the thick filament at its C-terminal end (MyBP-CC8C10), but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7) to myosin heads and/or the thin filament. MyBP-C is thought to control muscle contraction via the regulation of myosin motors, as mutations lead to debilitating disease. We use a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. We show that cleavage leads to alterations in crossbridge kinetics and passive structural signatures of myofilaments that are indicative of a shift of myosin heads towards the ON state, highlighting the importance of MyBP-CC1C7 to myofilament force production and regulation.


Subject(s)
Carrier Proteins , Sarcomeres , Sarcomeres/metabolism , Carrier Proteins/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Myosins/metabolism
5.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38014200

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

6.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961718

ABSTRACT

In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where they are more likely to form crossbridges. To study this proposed mechanism, we used the C2-/- mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers presented deficits in force production and reduced calcium sensitivity. Structurally, passive C2-/- fibers presented altered SL-independent and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially extended in C2-/- vs. non-transgenic controls, which we postulate is due to increased low-level crossbridge formation arising from relatively more ON myosins in the passive muscle that elongates the thin filament. The downstream effect of increasing crossbridge formation in a passive muscle on contraction performance is not known. Such widespread structural changes to sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-associated diseases.

7.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014235

ABSTRACT

The Frank-Starling law states that the heart's stroke volume increases with greater preload due to increased venous return, allowing the heart to adapt to varying circulatory demands. Molecularly, increasing preload increases sarcomere length (SL), which alters sarcomere structures that are correlated to increased calcium sensitivity upon activation. The titin protein, spanning the half-sarcomere, acts as a spring in the I-band, applying a SL-dependent force suggested to pull against and alter myofilaments in a way that supports the Frank-Starling effect. To evaluate this, we employed the titin cleavage (TC) model, where a tobacco-etch virus protease recognition site is inserted into distal I-band titin and allows for rapid, specific cleavage of titin in an otherwise-healthy sarcomere. Here, we evaluated the atomic-level structures of amyopathic cardiac myofilaments following 50% titin cleavage under passive stretch conditions using small-angle X-ray diffraction, which measures these structures under near-physiological (functional) conditions. We report that titin-based forces in permeabilized papillary muscle regulate both thick and thin myofilament structures clearly supporting titin's role in the Frank-Starling mechanism.

8.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745361

ABSTRACT

Contraction force in muscle is produced by the interaction of myosin motors in the thick filaments and actin in the thin filaments and is fine-tuned by other proteins such as myosin-binding protein C (MyBP-C). One form of control is through the regulation of myosin heads between an ON and OFF state in passive sarcomeres, which leads to their ability or inability to interact with the thin filaments during contraction, respectively. MyBP-C is a flexible and long protein that is tightly bound to the thick filament at its C-terminal end but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7). Under considerable debate is whether the MyBP-CC1C7 domains directly regulate myosin head ON/OFF states, and/or link thin filaments ("C-links"). Here, we used a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. After cleavage, the thin filaments were significantly shorter, a result consistent with direct interactions of MyBP-C with thin filaments thus confirming C-links. Ca2+ sensitivity was reduced at shorter sarcomere lengths, and crossbridge kinetics were increased across sarcomere lengths at submaximal activation levels, demonstrating a role in crossbridge kinetics. Structural signatures of the thick filaments suggest that cleavage also shifted myosin heads towards the ON state - a marker that typically indicates increased Ca2+ sensitivity but that may account for increased crossbridge kinetics at submaximal Ca2+ and/or a change in the force transmission pathway. Taken together, we conclude that MyBP-CC1C7 domains play an important role in contractile performance which helps explain why mutations in these domains often lead to debilitating diseases.

9.
Am J Physiol Heart Circ Physiol ; 325(3): H585-H591, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37505469

ABSTRACT

Dilated cardiomyopathy (DCM) is a naturally occurring heart failure condition in humans and dogs, notably characterized by a reduced contractility and ejection fraction. As the identification of its underlying cellular and molecular mechanisms remain incomplete, the aim of the present study was to assess whether the molecular motor myosin and its known relaxed conformational states are altered in DCM. For that, we dissected and skinned thin cardiac strips from left ventricle obtained from six DCM Doberman Pinschers and six nonfailing (NF) controls. We then used a combination of Mant-ATP chase experiments and X-ray diffraction to assess both energetic and structural changes of myosin. Using the Mant-ATP chase protocol, we observed that in DCM dogs, the amount of myosin molecules in the ATP-conserving conformational state, also known as superrelaxed (SRX), is significantly increased when compared with NF dogs. This alteration can be rescued by applying EMD-57033, a small molecule activating myosin. Conversely, with X-ray diffraction, we found that in DCM dogs, there is a higher proportion of myosin heads in the vicinity of actin when compared with NF dogs (1,0 to 1,1 intensity ratio). Hence, we observed an uncoupling between energetic (Mant-ATP chase) and structural (X-ray diffraction) data. Taken together, these results may indicate that in the heart of Doberman Pinschers with DCM, myosin molecules are potentially stuck in a nonsequestered but ATP-conserving SRX state, that can be counterbalanced by EMD-57033 demonstrating the potential for a myosin-centered pharmacological treatment of DCM.NEW & NOTEWORTHY The key finding of the present study is that, in left ventricles of dogs with a naturally occurring dilated cardiomyopathy, relaxed myosin molecules favor a nonsequestered superrelaxed state potentially impairing sarcomeric contractility. This alteration is rescuable by applying a small molecule activating myosin known as EMD-57033.


Subject(s)
Cardiomyopathy, Dilated , Humans , Dogs , Animals , Myocardium , Myosins , Adenosine Triphosphate
10.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865266

ABSTRACT

In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, mdm titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces. Furthermore, no RFE structural state was detected in mdm muscle. We posit that decreased lattice spacing, increased thick filament stiffness, and increased non-crossbridge forces are the major contributors to RFE. We conclude that titin directly contributes to RFE.

11.
Proc Natl Acad Sci U S A ; 119(48): e2209441119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409887

ABSTRACT

Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.


Subject(s)
Actin Cytoskeleton , Sarcomeres , Mice , Animals , Connectin/metabolism , Sarcomeres/metabolism , Actin Cytoskeleton/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Protein Kinases/metabolism
13.
Front Physiol ; 12: 648019, 2021.
Article in English | MEDLINE | ID: mdl-33854441

ABSTRACT

The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.

14.
J Mol Biol ; 433(9): 166901, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33647290

ABSTRACT

Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an α-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress.


Subject(s)
Actins/chemistry , Actins/metabolism , Connectin/chemistry , Connectin/metabolism , Muscle Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Male , Mice , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutation , Myofibrils/chemistry , Myofibrils/metabolism , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Pliability , Protein Binding , Rabbits , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sarcomeres/chemistry , Sarcomeres/metabolism
15.
J Exp Biol ; 224(Pt 1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33257433

ABSTRACT

Much of our understanding of in vivo skeletal muscle properties is based on studies performed under maximal activation, which is problematic because muscles are rarely activated maximally during movements such as walking. Currently, force-length properties of the human triceps surae at submaximal voluntary muscle activity levels are not characterized. We therefore evaluated plantar flexor torque- and force-ankle angle, and torque- and force-fascicle length properties of the soleus and lateral gastrocnemius muscles during voluntary contractions at three activity levels: 100, 30 and 22% of maximal voluntary contraction. Soleus activity levels were controlled by participants via real-time electromyography feedback and contractions were performed at ankle angles ranging from 10 deg plantar flexion to 35 deg dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length curves of the soleus and lateral gastrocnemius muscles were constructed. The results indicate that small muscle activity reductions shift the torque- and force-angle, and torque- and force-fascicle length curves of these muscles to more dorsiflexed ankle angles and longer fascicle lengths (from 3 to 20% optimal fascicle length, depending on ankle angle). The shift in the torque- and force-fascicle length curves during submaximal voluntary contraction have potential implications for human locomotion (e.g. walking) as the operating range of fascicles shifts to the ascending limb, where muscle force capacity is reduced by at least 15%. These data demonstrate the need to match activity levels during construction of the torque- and force-fascicle length curves to activity levels achieved during movement to better characterize the lengths that muscles operate at relative to their optimum during a specific task.


Subject(s)
Isometric Contraction , Muscle Contraction , Ankle Joint , Electromyography , Humans , Muscle, Skeletal , Torque
16.
J Biomech ; 114: 110144, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33278768

ABSTRACT

The influence of angular velocity on rate of torque development (RTD) is unknown, despite the inverse, curvilinear torque-velocity relationship for angle- and velocity-specific maximum available torque (Tmax) being well-established. This study investigated the relationship between angular velocity and RTD scaled to Tmax. In 17 participants, tetanic contractions (100-Hz) of the knee extensors were evoked as the knee was passively extended at different iso-velocities between 0° s-1 and 200° s-1. Each condition consisted of evoking 0.25-s contractions without pre-activation (for measuring RTD) commencing as the knee passed 95° of extension, and 1.25-s contractions with pre-activation (for measuring Tmax), commencing 1 s prior to the knee reaching 95°. Torque at 100 ms after torque onset (T100) and peak RTD (RTDpeak) in the contractions without pre-activation were normalised to Tmax. The torque-velocity relationship for T100 was flat in comparison to an inverse, curvilinear relationship for Tmax, resulting in linear increases in normalised T100 and RTDpeak with increased velocity. Results also showed normalised T100 and RTDpeak were likely overestimated due to shortening-induced force depression (FD) which would be greater in contractions with- than without- pre-activation. However, these effects of FD cannot explain the faster normalised RTD with increased velocity, as the relative difference in work done (a proxy for FD) between contractions with and without pre-activation decreased - and thus the overestimation of normalised RTD metrics likely decreased - with increased velocity. In conclusion, RTD scaled to Tmax increases with increased velocity, which appears to be an intrinsic contractile property independent of the effects of force depression.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Humans , Isometric Contraction , Knee , Knee Joint , Torque
17.
Elife ; 92020 12 24.
Article in English | MEDLINE | ID: mdl-33357376

ABSTRACT

The giant muscle protein titin is a major contributor to passive force; however, its role in active force generation is unresolved. Here, we use a novel titin-cleavage (TC) mouse model that allows specific and rapid cutting of elastic titin to quantify how titin-based forces define myocyte ultrastructure and mechanics. We show that under mechanical strain, as TC doubles from heterozygous to homozygous TC muscles, Z-disks become increasingly out of register while passive and active forces are reduced. Interactions of elastic titin with sarcomeric actin filaments are revealed. Strikingly, when titin-cleaved muscles contract, myosin-containing A-bands become split and adjacent myosin filaments move in opposite directions while also shedding myosins. This establishes intact titin filaments as critical force-transmission networks, buffering the forces observed by myosin filaments during contraction. To perform this function, elastic titin must change stiffness or extensible length, unveiling its fundamental role as an activation-dependent spring in contracting muscle.


Subject(s)
Muscle Contraction , Muscle Proteins/physiology , Muscle, Skeletal/physiology , Protein Kinases/physiology , Animals , Female , Male , Mice , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Kinases/metabolism , Tensile Strength
18.
J Vis Exp ; (163)2020 09 27.
Article in English | MEDLINE | ID: mdl-33044458

ABSTRACT

The mechanical properties of contracting skeletal fibers are crucial indicators of overall muscle health, function, and performance. Human skeletal muscle biopsies are often collected for these endeavors. However, relatively few technical descriptions of biopsy procedures, outside of the commonly used musculus vastus lateralis, are available. Although the biopsy techniques are often adjusted to accommodate the characteristics of each muscle under study, few technical reports share these changes to the greater community. Thus, muscle tissue from human participants is often wasted as the operator reinvents the wheel. Expanding the available material on biopsies from a variety of muscles can reduce the incident of failed biopsies. This technical report describes a variation of the modified Bergström technique on the musculus tibialis anterior that limits fiber damage and provides fiber lengths adequate for mechanical evaluation. The surgery is an outpatient procedure that can be completed in an hour. The recovery period for this procedure is immediate for light activity (i.e., walking), up to three days for the resumption of normal physical activity, and about one week for wound care. The extracted tissue can be used for mechanical force experiments and here we present representative activation data. This protocol is appropriate for most collection purposes, potentially adaptable to other skeletal muscles, and may be improved by modifications to the collection needle.


Subject(s)
Biopsy/methods , Mechanical Phenomena , Muscle, Skeletal/pathology , Tibia , Biocompatible Materials , Female , Humans , Male , Needles
19.
J Exp Biol ; 222(Pt 12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31097600

ABSTRACT

During isometric contractions, the optimal length of skeletal muscles increases with decreasing activation. The underlying mechanism for this phenomenon is thought to be linked to length dependence of Ca2+ sensitivity. Muscular dystrophy with myositis (mdm), a recessive titin mutation in mice, was used as a tool to study the role of titin in activation dependence of optimal length and length dependence of Ca2+ sensitivity. We measured the shift in optimal length between tetanic and twitch stimulation in mdm and wild-type muscles, and the length dependence of Ca2+ sensitivity at short and long sarcomere lengths in mdm and wild-type fiber bundles. The results indicate that the mdm mutation leads to a loss of activation dependence of optimal length without the expected change in length dependence of Ca2+ sensitivity, demonstrating that these properties are not linked, as previously suggested. Furthermore, mdm muscles produced maximum tetanic stress during sub-optimal filament overlap at lengths similar to twitch contractions in both genotypes, but the difference explains less than half of the observed reduction in active force of mdm muscles. Mdm muscles also exhibited increased electromechanical delay, contraction and relaxation times, and decreased rate of force development in twitch contractions. We conclude that the small deletion in titin associated with mdm in skeletal muscles alters force production, suggesting an important regulatory role for titin in active force production. The molecular mechanisms for titin's role in regulating muscle force production remain to be elucidated.


Subject(s)
Isometric Contraction/physiology , Muscle, Skeletal/physiology , Protein Kinases/genetics , Animals , Base Sequence , Mice , Sequence Deletion/genetics
20.
Front Robot AI ; 5: 36, 2018.
Article in English | MEDLINE | ID: mdl-33500922

ABSTRACT

Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a "winding filament" hypothesis (WFH) for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4-5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = -8 to -19°) and ankle moments (range = 1 to 1.5 Nm/kg) similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range -15 to -19°) that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at variable speed and stair ascent with minimal sensing and no change in parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...