Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Toxicol Rep ; 9: 883-894, 2022.
Article in English | MEDLINE | ID: mdl-36518475

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) samples are the only remaining biological archive for many toxicological and clinical studies, yet their use in genomics has been limited due to nucleic acid damage from formalin fixation. Older FFPE samples with highly degraded RNA pose a particularly difficult technical challenge. Probe-based targeted sequencing technologies show promise in addressing this issue but have not been directly compared to standard whole-genome RNA-Sequencing (RNA-Seq) methods. In this study, we evaluated dose-dependent transcriptional changes from paired frozen (FROZ) and FFPE liver samples stored for over 20 years using targeted resequencing (TempO-Seq) and whole-genome RNA-Seq methods. Samples were originally collected from male mice exposed to a reference chemical (dichloroacetic acid, DCA) at 0, 198, 313, and 427 mg/kg-day (n = 6/dose) by drinking water for 6 days. TempO-Seq showed high overlap in differentially expressed genes (DEGs) between matched FFPE and FROZ samples and high concordance in fold-change values across the two highest dose levels of DCA vs. control (R2 ≥ 0.94). Similarly, high concordance in fold-change values was observed between TempO-Seq FFPE and RNA-Seq FROZ results (R2 ≥ 0.92). In contrast, RNA-Seq FFPE samples showed few overlapping DEGs compared to FROZ RNA-Seq (≤5 for all dose groups). Modeling of DCA-dependent changes in gene sets identified benchmark doses from TempO-Seq FROZ and FFPE samples within 1.4-fold of RNA-Seq FROZ samples (93.9 mg/kg-d), whereas RNA-Seq FFPE samples were 3.3-fold higher (310.3 mg/kg-d). This work demonstrates that targeted sequencing may provide a more robust method for quantifying gene expression profiles from aged archival FFPE samples.

2.
Sci Rep ; 12(1): 6509, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443772

ABSTRACT

Formalin fixation of biological specimens damages nucleic acids and limits their use in genomic analyses. Previously, we showed that RNA isolation with an organocatalyst (2-amino-5-methylphenyl phosphonic acid, used to speed up reversal of formalin-induced adducts) and extended heated incubation (ORGΔ) improved RNA-sequencing data from formalin-fixed paraffin-embedded (FFPE) tissue samples. The primary goal of this study was to evaluate whether ORGΔ treatment improves DNA-sequencing data from clinical FFPE samples. We isolated RNA and DNA ± ORGΔ from paired FFPE and frozen human renal and ovarian carcinoma specimens collected as part of the National Cancer Institute Biospecimen Pre-analytical Variables program. Tumor types were microscopically confirmed from adjacent tissue sections. Following extraction, DNA was fragmented and sequenced and differences were compared between frozen and FFPE sample pairs. Treatment with ORGΔ improved concurrent SNP calls in FFPE DNA compared to non-ORGΔ FFPE samples and enhanced confidence in SNP calls for all FFPE DNA samples, beyond that of matched frozen samples. In general, the concordant SNPs identified in paired frozen and FFPE DNA samples agreed for both genotype and homozygosity vs. heterozygosity of calls regardless of ORGΔ treatment. The increased confidence in ORGΔ FFPE DNA variant calls relative to the matched frozen DNA suggests a novel application of this method. With further optimization, this method may improve quality of DNA-sequencing data in FFPE as well as frozen tissue samples.


Subject(s)
Formaldehyde , RNA , DNA/genetics , Humans , Paraffin Embedding , RNA/genetics , Tissue Fixation/methods
3.
PLoS One ; 17(1): e0261853, 2022.
Article in English | MEDLINE | ID: mdl-35025926

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription/genetics , SARS-CoV-2/genetics , COVID-19/virology , Feasibility Studies , Humans , Nasopharynx/virology , Pandemics/prevention & control , Sensitivity and Specificity , Serologic Tests/methods , Specimen Handling/methods
4.
Environ Int ; 160: 107056, 2022 02.
Article in English | MEDLINE | ID: mdl-34952357

ABSTRACT

Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Female , Fluorocarbon Polymers , Fluorocarbons/toxicity , Oxides , Pregnancy , Rats , Rats, Sprague-Dawley
5.
Toxicology ; 465: 153046, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34813904

ABSTRACT

Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice. To provide insights into the adverse outcome pathway (AOP) that underlies these tumors, effects of methidathion in the male mouse liver were examined after 7 and 28 day exposures and compared to those of two other OPs that either do not increase (fenthion) or possibly suppress liver cancer (parathion) in mice. None of the chemicals caused increases in liver weight/body weight or histopathological changes in the liver. Parathion decreased liver cell proliferation after 7 and 28 days while the other chemicals had no effects. There was no evidence for hepatotoxicity in any of the treatment groups. Full-genome microarray analysis of the livers from the 7 and 28 day treatments demonstrated that methidathion and fenthion regulated a large number of overlapping genes, while parathion regulated a unique set of genes. Examination of cytochrome P450 enzyme activities and use of predictive gene expression biomarkers found no consistent evidence for activation of AhR, CAR, PXR, or PPARα. Parathion suppressed the male-specific gene expression pattern through STAT5b, similar to genetic and dietary conditions that decrease liver tumor incidence in mice. Overall, these findings indicate that methidathion causes liver cancer by a mechanism that does not involve common mechanisms of liver cancer induction.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chemical and Drug Induced Liver Injury/genetics , Genomics , Insecticides/toxicity , Liver Neoplasms/genetics , Liver/drug effects , Organophosphorus Compounds/toxicity , Transcriptome/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Constitutive Androstane Receptor/agonists , Constitutive Androstane Receptor/genetics , Constitutive Androstane Receptor/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fenthion/toxicity , Gene Expression Profiling , Liver/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Organothiophosphorus Compounds/toxicity , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , Parathion/toxicity , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
6.
Toxicol Sci ; 186(1): 118-133, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34927697

ABSTRACT

Development of in vitro new approach methodologies has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay characterizes DNT hazard based on changes in network formation but provides no mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically induced neural network dysfunction. Rat primary cortical neural networks grown on microelectrode arrays were exposed for 12 days in vitro to cytosine arabinoside, 5-fluorouracil, domoic acid, cypermethrin, deltamethrin, or haloperidol as these exposures altered network formation in previous studies. RNA-seq from cells and gas chromatography/mass spectrometry analysis of media extracts collected on days in vitro 12 provided gene expression and metabolomic identification, respectively. The integration of differentially expressed genes and metabolites for each neurotoxicant was analyzed using ingenuity pathway analysis. All 6 compounds altered gene expression that linked to developmental disorders and neurological diseases. Other enriched canonical pathways overlapped among compounds of the same class; eg, genes and metabolites altered by both cytosine arabinoside and 5-fluorouracil exposures are enriched in axonal guidance pathways. Integrated analysis of upstream regulators was heterogeneous across compounds, but identified several transcriptomic regulators including CREB1, SOX2, NOTCH1, and PRODH. These results demonstrate that changes in network formation are accompanied by transcriptomic and metabolomic changes and that different classes of compounds produce differing responses. This approach can enhance information obtained from new approach methodologies and contribute to the identification and development of adverse outcome pathways associated with DNT.


Subject(s)
Adverse Outcome Pathways , Neurotoxicity Syndromes , Animals , Microelectrodes , Neural Networks, Computer , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Rats , Transcriptome
7.
medRxiv ; 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33880478

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

9.
NPJ Syst Biol Appl ; 7(1): 7, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33504769

ABSTRACT

The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.


Subject(s)
Hepatocytes/drug effects , High-Throughput Screening Assays/methods , Toxicogenetics/methods , Bayes Theorem , Cell Culture Techniques , Cell Line , Humans , Liver/cytology , Small Molecule Libraries , Transcription Factors/drug effects , Transcriptome/genetics
10.
Risk Anal ; 41(8): 1447-1462, 2021 08.
Article in English | MEDLINE | ID: mdl-33124753

ABSTRACT

Imported goods create value in destination countries but also create biosecurity risk. Although widely used in other domains of the economy, risk markets have not been created to manage losses that occur when exotic pests and diseases are introduced with traded goods. In this article we show that not all biosecurity risks are insurable. Losses arising from effort needed to detect and respond to exotic pests and diseases that breach national borders appear to be insurable because entry of these threats and consequent response costs, can be regarded as random events. As pests and diseases establish and spread, however, loss of access to export markets and productivity losses display systematic risk and appear to be uninsurable. Other insurability criteria support this definition of the boundary of biosecurity risk markets. We use the Australian biosecurity system as an example, although the framework described in this study will be applicable to biosecurity systems worldwide. We argue that biosecurity risk insurance could be incorporated into the current biosecurity system but would require legislation mandating importers to purchase insurance. Advantages of actuarial pricing of biosecurity risk are: (i) an increase in economic efficiency to the extent that importers respond to the price of biosecurity risk; (ii) financial sustainability would improve because actuarial pricing creates a structural link between funds available for biosecurity activities and risk exposure; and (iii) equity issues evident in the current biosecurity system could be addressed because risk creators (importers) would fund response activities through the purchase of insurance.


Subject(s)
Biosecurity , Economics , Fish Diseases/prevention & control , Risk Assessment/methods , Animal Husbandry , Animals , Australia , Commerce , Consumer Behavior , Costs and Cost Analysis , Environmental Monitoring , Humans , International Cooperation , Models, Economic , Musa/microbiology , Palaemonidae/virology , Plant Diseases , Politics , Risk , Security Measures
11.
Sci Rep ; 10(1): 14497, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879405

ABSTRACT

Sequencing technologies now provide unprecedented access to genomic information in archival formalin-fixed paraffin-embedded (FFPE) tissue samples. However, little is known about artifacts induced during formalin fixation, which could bias results. Here we evaluated global changes in RNA-sequencing profiles between matched frozen and FFPE samples. RNA-sequencing was performed on liver samples collected from mice treated with a reference chemical (phenobarbital) or vehicle control for 7 days. Each sample was divided into four parts: (1) fresh-frozen, (2) direct-fixed in formalin for 18 h, (3) frozen then formalin-fixed, and (4) frozen then ethanol-fixed and paraffin-embedded (n = 6/group/condition). Direct fixation resulted in 2,946 differentially expressed genes (DEGs) vs. fresh-frozen, 98% of which were down-regulated. Freezing prior to formalin fixation had ≥ 95% fewer DEGs vs. direct fixation, indicating that most formalin-derived transcriptional effects in the liver occurred during fixation. This finding was supported by retrospective studies of paired frozen and FFPE samples, which identified consistent enrichment in oxidative stress, mitochondrial dysfunction, and transcription initiation pathways with direct fixation. Notably, direct formalin fixation in the parent study did not significantly impact response profiles resulting from chemical exposure. These results advance our understanding of FFPE samples as a resource for genomic research.


Subject(s)
Formaldehyde/chemistry , Paraffin Embedding/methods , Specimen Handling/methods , Tissue Fixation/methods , Transcriptome , Algorithms , Animals , Ethanol/chemistry , Fixatives , Freezing , Gene Expression Profiling , Gene Expression Regulation , Liver/metabolism , Male , Mice , RNA-Seq , Retrospective Studies
12.
EMBO Mol Med ; 12(6): e12634, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32375201

ABSTRACT

Current demand for SARS-CoV-2 testing is straining material resource and labor capacity around the globe. As a result, the public health and clinical community are hindered in their ability to monitor and contain the spread of COVID-19. Despite broad consensus that more testing is needed, pragmatic guidance toward realizing this objective has been limited. This paper addresses this limitation by proposing a novel and geographically agnostic framework (the 4Ps framework) to guide multidisciplinary, scalable, resource-efficient, and achievable efforts toward enhanced testing capacity. The 4Ps (Prioritize, Propagate, Partition, and Provide) are described in terms of specific opportunities to enhance the volume, diversity, characterization, and implementation of SARS-CoV-2 testing to benefit public health. Coordinated deployment of the strategic and tactical recommendations described in this framework has the potential to rapidly expand available testing capacity, improve public health decision-making in response to the COVID-19 pandemic, and/or to be applied in future emergent disease outbreaks.


Subject(s)
Coronavirus Infections/diagnosis , Global Health , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Strategic Planning
13.
Toxicol Sci ; 170(2): 357-373, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31093665

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) tissues provide an important resource for toxicogenomic research. However, variability in the integrity or quality of RNA obtained from archival FFPE specimens can lead to unreliable data and wasted resources, and standard protocols for measuring RNA integrity do not adequately assess the suitability of FFPE RNA. The main goal of this study was to identify improved methods for evaluating FFPE RNA quality for whole-genome sequencing. We examined RNA quality metrics conducted prior to RNA-sequencing in paired frozen and FFPE samples with varying levels of quality based on age in block and time in formalin. RNA quality was measured by the RNA integrity number (RIN), a modified RIN called the paraffin-embedded RNA metric, the percentage of RNA fragments >100-300 nucleotides in size (DV100-300), and 2 quantitative PCR-based methods. This information was correlated to sequencing read quality, mapping, and gene detection. Among fragmentation-based methods, DV and PCR-based metrics were more informative than RIN or paraffin-embedded RNA metric in determining sequencing success. Across low- and high-quality FFPE samples, a minimum of 80% of RNA fragments >100 nucleotides (DV100 > 80) provided the best indication of gene diversity and read counts upon sequencing. The PCR-based methods further showed quantitative reductions in amplifiable RNA of target genes related to sample age and time in formalin that inform input quantity of FFPE RNA for sequencing. These results should aid in screening and prioritizing archival FFPE samples for retrospective analyses of gene expression.


Subject(s)
Paraffin Embedding/standards , RNA/analysis , Tissue Fixation/standards , Humans , RNA/standards , Sequence Analysis, RNA , Whole Genome Sequencing
14.
CBE Life Sci Educ ; 17(4): ar63, 2018 12.
Article in English | MEDLINE | ID: mdl-30496030

ABSTRACT

Providing opportunities for science, technology, engineering, and mathematics undergraduates to engage in authentic scientific practices is likely to influence their view of science and may impact their decision to persist through graduation. Laboratory courses provide a natural place to introduce students to scientific practices, but existing curricula often miss this opportunity by focusing on confirming science content rather than exploring authentic questions. Integrating authentic science within laboratory courses is particularly challenging at high-enrollment institutions and community colleges, where access to research-active faculty may be limiting. The Authentic Inquiry through Modeling in Biology (AIM-Bio) curriculum presented here engages students in authentic scientific practices through iterative cycles of model generation, testing, and revision. AIM-Bio university and community college students demonstrated their ability to propose diverse models for biological phenomena, formulate and address hypotheses by designing and conducting experiments, and collaborate with classmates to revise models based on experimental data. Assessments demonstrated that AIM-Bio students had an enhanced sense of project ownership and greater identification as scientists compared with students in existing laboratory courses. AIM-Bio students also experienced measurable gains in their nature of science understanding and skills for doing science. Our results suggest AIM-Bio as a potential alternative to more resource-intensive curricula with similar outcomes.


Subject(s)
Biology/education , Curriculum , Laboratories , Models, Educational , Students , Thinking , Bacteria/growth & development , Chlamydomonas/physiology , Faculty , Humans , Ownership , Phototaxis , Research/education , Research Personnel , Surveys and Questionnaires , Universities
15.
Toxicol Sci ; 162(2): 535-547, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29228314

ABSTRACT

Archival formalin-fixed paraffin-embedded (FFPE) tissue samples offer a vast but largely untapped resource for genomic research. The primary technical issues limiting use of FFPE samples are RNA yield and quality. In this study, we evaluated methods to demodify RNA highly fragmented and crosslinked by formalin fixation. Primary endpoints were RNA recovery, RNA-sequencing quality metrics, and transcriptional responses to a reference chemical (phenobarbital, PB). Frozen mouse liver samples from control and PB groups (n = 6/group) were divided and preserved for 3 months as follows: frozen (FR); 70% ethanol (OH); 10% buffered formalin for 18 h followed by ethanol (18F); or 10% buffered formalin (3F). Samples from OH, 18F, and 3F groups were processed to FFPE blocks and sectioned for RNA isolation. Additional sections from 3F received the following demodification protocols to mitigate RNA damage: short heated incubation with Tris-Acetate-EDTA buffer; overnight heated incubation with an organocatalyst using 2 different isolation kits; or overnight heated incubation without organocatalyst. Ribo-depleted, stranded, total RNA libraries were built and sequenced using the Illumina HiSeq 2500 platform. Overnight incubation (± organocatalyst) increased RNA yield >3-fold and RNA integrity numbers and fragment analysis values by > 1.5- and >3.0-fold, respectively, versus 3F. Postsequencing metrics also showed reduced bias in gene coverage and deletion rates for overnight incubation groups. All demodification groups had increased overlap for differentially expressed genes (77%-84%) and enriched pathways (91%-97%) with FR, with the highest overlap in the organocatalyst groups. These results demonstrate simple changes in RNA isolation methods that can enhance genomic analyses of FFPE samples.


Subject(s)
Gene Expression Profiling/methods , Paraffin Embedding/methods , RNA Stability , Sequence Analysis, RNA , Tissue Fixation/methods , Transcriptome/drug effects , Animals , Databases, Genetic , Fixatives/chemistry , Formaldehyde/chemistry , Frozen Sections , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred Strains
16.
Toxicol Sci ; 160(1): 15-29, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28973534

ABSTRACT

Current strategies for predicting carcinogenic mode of action for nongenotoxic chemicals are based on identification of early key events in toxicity pathways. The goal of this study was to evaluate short-term key event indicators resulting from exposure to androstenedione (A4), an androgen receptor agonist and known liver carcinogen in mice. Liver cancer is more prevalent in men compared with women, but androgen-related pathways underlying this sex difference have not been clearly identified. Short-term hepatic effects of A4 were compared with reference agonists of the estrogen receptor (ethinyl estradiol, EE) and glucocorticoid receptor (prednisone, PRED). Male B6C3F1 mice were exposed for 7 or 28 days to A4, EE, or PRED. EE increased and PRED suppressed hepatocyte proliferation, while A4 had no detectable effects. In a microarray analysis, EE and PRED altered >3000 and >670 genes, respectively, in a dose-dependent manner, whereas A4 did not significantly alter any genes. Gene expression was subsequently examined in archival liver samples from male and female B6C3F1 mice exposed to A4 for 90 days. A4 altered more genes in females than males and did not alter expression of genes linked to activation of the mitogenic xenobiotic receptors AhR, CAR, and PPARα in either sex. A gene expression biomarker was used to show that in female mice, the high dose of A4 activated the growth hormone-regulated transcription factor STAT5b, which controls sexually dimorphic gene expression in the liver. These findings suggest that A4 induces subtle age-related effects on STAT5b signaling that may contribute to the higher risk of liver cancer in males compared with females.


Subject(s)
Androstenedione/toxicity , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/chemistry , Cell Transformation, Neoplastic/genetics , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver/drug effects , Animals , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Ethinyl Estradiol/toxicity , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Liver/metabolism , Liver/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Phenotype , Prednisone/toxicity , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Sex Factors , Time Factors , Transcriptome
17.
Toxicol Sci ; 159(2): 354-365, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28962523

ABSTRACT

Early-life environmental factors can influence later-life susceptibility to cancer. Recent evidence suggests that metabolic pathways may mediate this type of latency effect. Previously, we reported that short-term exposure to dichloroacetic acid (DCA) increased liver cancer in mice 84 weeks after exposure was stopped. Here, we evaluated time course dynamics for key events related to this effect. This study followed a stop-exposure design in which 28-day-old male B6C3F1 mice were given the following treatments in drinking water for up to 93 weeks: deionized water (dH2O, control); 3.5 g/l DCA continuously; or 3.5 g/l DCA for 4-52 weeks followed by dH2O. Effects were evaluated at eight interim time points. A short-term biomarker study was used to evaluate DCA effects at 6, 15, and 30 days. Liver tumor incidence was higher in all DCA treatment groups, including carcinomas in 82% of mice previously treated with DCA for only 4 weeks. Direct effects of DCA in the short-term study included decreased liver cell proliferation and marked mRNA changes related to mitochondrial dysfunction and altered cell metabolism. However, all observed short-term effects of DCA were ultimately reversible, and prior DCA treatment did not affect liver cell proliferation, apoptosis, necrosis, or DNA sequence variants with age. Key intermediate events resulting from transient DCA exposure do not fit classical cytotoxic, mitogenic, or genotoxic modes of action for carcinogenesis, suggesting a distinct mechanism associated with early-life metabolic disruption.


Subject(s)
Carcinogens/toxicity , Dichloroacetic Acid/toxicity , Liver Neoplasms, Experimental/chemically induced , Animals , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred Strains , Organ Size/drug effects
18.
Development ; 144(10): 1896-1905, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28432218

ABSTRACT

We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited.


Subject(s)
Body Patterning , Heteroptera/embryology , Animals , Body Patterning/genetics , Cell Division/genetics , Cell Proliferation/genetics , Cleavage Stage, Ovum/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Heteroptera/genetics
19.
Toxicol Sci ; 156(1): 230-239, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28013218

ABSTRACT

Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified toluene-induced suppression of motor activity in 123 lines of these flies during exposure to toluene, a volatile organic compound known to induce narcosis in mammals via its effects on neuronal ion channels. We then applied genome-wide association analyses on this effect of toluene using the DGRP web portal (http://dgrp2.gnets.ncsu.edu), which identified polymorphisms in candidate genes associated with the variation in response to toluene exposure. We tested ∼2 million variants and found 82 polymorphisms located in or near 66 candidate genes that were associated with phenotypic variation for sensitivity to toluene at P < 5 × 10-5, and human orthologs for 52 of these candidate Drosophila genes. None of these orthologs are known to be involved in canonical pathways for mammalian neuronal ion channels, including GABA, glutamate, dopamine, glycine, serotonin, and voltage sensitive calcium channels. Thus this analysis did not reveal a genetic signature consistent with processes previously shown to be involved in toluene-induced narcosis in mammals. The list of the human orthologs included Gene Ontology terms associated with signaling, nervous system development and embryonic morphogenesis; these orthologs may provide insight into potential new pathways that could mediate the narcotic effects of toluene.


Subject(s)
Air Pollutants/toxicity , Drosophila melanogaster/drug effects , Drug Resistance , Gene Expression Regulation, Developmental/drug effects , Polymorphism, Genetic , Solvents/toxicity , Toluene/toxicity , Animals , Behavior, Animal/drug effects , Databases, Genetic , Drosophila Proteins/agonists , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Ontology , Genome-Wide Association Study , Humans , Male , Molecular Sequence Annotation , Motor Activity/drug effects , Species Specificity
20.
Toxicol Sci ; 154(2): 202-213, 2016 12.
Article in English | MEDLINE | ID: mdl-27562560

ABSTRACT

Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here, we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from 2 archival studies in mice, one <2 years old and the other >20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r2 = 0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (<5% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r2 = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing quality metrics, DEG profiles, and dose-response parameters, while further methods development is needed for older lower-quality FFPE samples. This work should help advance the use of archival resources in chemical safety and translational science.


Subject(s)
Dichloroacetic Acid/toxicity , Diethylhexyl Phthalate/toxicity , Fixatives/chemistry , Formaldehyde/chemistry , Gene Expression Profiling , Liver/drug effects , Paraffin Embedding , Sequence Analysis, RNA , Tissue Fixation/methods , Toxicity Tests/methods , Transcriptome/drug effects , Animals , Dose-Response Relationship, Drug , Freezing , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Genetic Markers , Liver/metabolism , Male , Mice , RNA Stability , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...