Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 90(5): 1814-23, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19111964

ABSTRACT

During the CAREBEIJING campaign in 2006, imaging differential optical absorption spectroscopy (I-DOAS) measurements were made from 08:00 to 16:00 on September 9 and 10 over Beijing, China. Detailed images of the near-surface NO(2) differential slant column density (DSCD) distribution over Beijing were obtained. Images with less than a 30-min temporal resolution showed both horizontal and vertical variations in NO(2) distributions. For DSCD to mixing ratio conversion, path length along the lines of I-DOAS lines of sight was estimated using the light-extinction coefficient and Angstrom exponent data obtained by a transmissometer and a sunphotometer, respectively. Mixing ratios measured by an in-situ NO(2) analyzer were compared with those estimated by the I-DOAS instrument. The obtained temporal and spatial variations in NO(2) distributions measured by I-DOAS for the two days are interpreted with consideration of the locations of the major NO(x) sources and local wind conditions. I-DOAS measurements have been applied in this study for estimating NO(2) distribution over an urban area with multiple and distributed emission sources. Results are obtained for estimated temporal and spatial NO(2) distributions over the urban atmosphere; demonstrating the capability of the I-DOAS technique. We discuss in this paper the use of I-DOAS measurements to estimate the NO(2) distribution over an urban area with multiple distributed emission sources.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Spectrum Analysis/methods , Air Pollution/analysis , China , Optics and Photonics
2.
Appl Opt ; 43(22): 4415-26, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15298416

ABSTRACT

A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

SELECTION OF CITATIONS
SEARCH DETAIL