Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 13(31): 13241-13248, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477732

ABSTRACT

Metal complexes at surfaces and interfaces play an important role in many areas of modern technology, including catalysis, sensors, and organic electronics. An important aspect of these interfaces is the possible exchange of the metal center, because this reaction can drastically alter the properties of the metal complex and thus of the interface. Here, we demonstrate that such metal exchange reactions are indeed possible and can proceed already at moderate temperatures even in the absence of solvents. Specifically, we studied the redox transmetalation of a monolayer of lead(ii)-tetraphenylporphyrin (PbTPP) with copper from a Cu(111) surface under ultrahigh-vacuum (UHV) conditions using multiple surface-sensitive techniques. Temperature-dependent X-ray photoelectron spectroscopy (XPS) reveals that the Pb/Cu exchange starts already below 380 K and is complete at 600 K. The identity of the reaction product, CuTPP, is confirmed by mass spectrometric detection in a temperature-programmed reaction (TPR) experiment. Scanning tunneling microscopy (STM) sheds light on the adsorbate structure of PbTPP at 300 K and uncovers the structural changes accompanying the transmetalation and side-reactions of the phenyl substituents. Moreover, individual free Pb atoms are observed as a product of the metal exchange.

2.
Chem Commun (Camb) ; 54(70): 9741-9744, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30084444

ABSTRACT

Control over the competition between an organometallic hexamer macrocycle and oligomer chains formed from the non-alternant aromatic 1,3-dibromoazulene (DBAz) precursor has been achieved in surface-assisted synthesis on a copper(111) surface. In contrast to kinetic reaction control via the high-dilution principle, the ring formation is achieved here by thermodynamic control, which is based on two-dimensional (2D) confinement and reversible bonds.

SELECTION OF CITATIONS
SEARCH DETAIL