Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Methods ; 21(4): 635-647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532014

ABSTRACT

Most proteins are organized in macromolecular assemblies, which represent key functional units regulating and catalyzing most cellular processes. Affinity purification of the protein of interest combined with liquid chromatography coupled to tandem mass spectrometry (AP-MS) represents the method of choice to identify interacting proteins. The composition of complex isoforms concurrently present in the AP sample can, however, not be resolved from a single AP-MS experiment but requires computational inference from multiple time- and resource-intensive reciprocal AP-MS experiments. Here we introduce deep interactome profiling by mass spectrometry (DIP-MS), which combines AP with blue-native-PAGE separation, data-independent acquisition with mass spectrometry and deep-learning-based signal processing to resolve complex isoforms sharing the same bait protein in a single experiment. We applied DIP-MS to probe the organization of the human prefoldin family of complexes, resolving distinct prefoldin holo- and subcomplex variants, complex-complex interactions and complex isoforms with new subunits that were experimentally validated. Our results demonstrate that DIP-MS can reveal proteome modularity at unprecedented depth and resolution.


Subject(s)
Proteome , Proteomics , Humans , Proteomics/methods , Chromatography, Affinity , Proteome/analysis , Tandem Mass Spectrometry , Protein Isoforms
2.
J Proteome Res ; 22(5): 1520-1536, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37058003

ABSTRACT

Protein complexes constitute the primary functional modules of cellular activity. To respond to perturbations, complexes undergo changes in their abundance, subunit composition, or state of modification. Understanding the function of biological systems requires global strategies to capture this contextual state information. Methods based on cofractionation paired with mass spectrometry have demonstrated the capability for deep biological insight, but the scope of studies using this approach has been limited by the large measurement time per biological sample and challenges with data analysis. There has been little uptake of this strategy into the broader life science community despite its rich biological information content. We present a rapid integrated experimental and computational workflow to assess the reorganization of protein complexes across multiple cellular states. The workflow combines short gradient chromatography and DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in a complex organization. We applied the workflow to study the global protein complex rearrangements of THP-1 cells undergoing monocyte to macrophage differentiation and subsequent stimulation of macrophage cells with lipopolysaccharide. We observed substantial proteome reorganization on differentiation and less pronounced changes in macrophage stimulation. We establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization.


Subject(s)
Proteome , Proteome/analysis , Mass Spectrometry/methods , Cell Differentiation
3.
PLoS Comput Biol ; 19(1): e1010457, 2023 01.
Article in English | MEDLINE | ID: mdl-36668672

ABSTRACT

Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep learning models have represented a performance breakthrough. Incorporating that technology into de novo protein sequencing workflows require machine-learning models capable of handling highly diverse MS data. In this study, we analyzed the requirements for assembling such generalizable deep learning models by systemcally varying the composition and size of the training set. We assessed the generated models' performances using two test sets composed of peptides originating from the multienzyme digestion of samples from various species. The peptide recall values on the test sets showed that the deep learning models generated from a collection of highly N- and C-termini diverse peptides generalized 76% more over the termini-restricted ones. Moreover, expanding the training set's size by adding peptides from the multienzymatic digestion with five proteases of several species samples led to a 2-3 fold generalizability gain. Furthermore, we tested the applicability of these multienzyme deep learning (MEM) models by fully de novo sequencing the heavy and light monomeric chains of five commercial antibodies (mAbs). MEMs extracted over 10000 matching and overlapped peptides across six different proteases mAb samples, achieving a 100% sequence coverage for 8 of the ten polypeptide chains. We foretell that the MEMs' proven improvements to de novo analysis will positively impact several applications, such as analyzing samples of high complexity, unknown nature, or the peptidomics field.


Subject(s)
Deep Learning , Proteomics , Proteomics/methods , Tandem Mass Spectrometry/methods , Peptides/chemistry , Sequence Analysis, Protein/methods , Peptide Hydrolases , Antibodies, Monoclonal
4.
J Proteome Res ; 21(2): 535-546, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35042333

ABSTRACT

Data-independent acquisition-mass spectrometry (DIA-MS) is the method of choice for deep, consistent, and accurate single-shot profiling in bottom-up proteomics. While classic workflows for targeted quantification from DIA-MS data require auxiliary data-dependent acquisition (DDA) MS analysis of subject samples to derive prior-knowledge spectral libraries, library-free approaches based on in silico prediction promise deep DIA-MS profiling with reduced experimental effort and cost. Coverage and sensitivity in such analyses are however limited, in part, by the large library size and persistent deviations from the experimental data. We present MSLibrarian, a new workflow and tool to obtain optimized predicted spectral libraries by the integrated usage of spectrum-centric DIA data interpretation via the DIA-Umpire approach to inform and calibrate the in silico predicted library and analysis approach. Predicted-vs-observed comparisons enabled optimization of intensity prediction parameters, calibration of retention time prediction for deviating chromatographic setups, and optimization of the library scope and sample representativeness. Benchmarking via a dedicated ground-truth-embedded experiment of species-mixed proteins and quantitative ratio-validation confirmed gains of up to 13% on peptide and 8% on protein level at equivalent FDR control and validation criteria. MSLibrarian is made available as an open-source R software package, including step-by-step user instructions, at https://github.com/MarcIsak/MSLibrarian.


Subject(s)
Peptides , Proteomics , Mass Spectrometry/methods , Peptides/analysis , Proteins , Proteome/analysis , Proteomics/methods , Software
5.
Nat Commun ; 12(1): 3810, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155216

ABSTRACT

To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.


Subject(s)
Protein Isoforms/analysis , Proteomics/methods , Algorithms , Animals , Benchmarking , Humans , Mice , Peptides/analysis , Peptides/metabolism , Protein Isoforms/metabolism , Proteomics/standards , Tandem Mass Spectrometry , Workflow
6.
Nat Methods ; 18(5): 520-527, 2021 05.
Article in English | MEDLINE | ID: mdl-33859439

ABSTRACT

Despite the availability of methods for analyzing protein complexes, systematic analysis of complexes under multiple conditions remains challenging. Approaches based on biochemical fractionation of intact, native complexes and correlation of protein profiles have shown promise. However, most approaches for interpreting cofractionation datasets to yield complex composition and rearrangements between samples depend considerably on protein-protein interaction inference. We introduce PCprophet, a toolkit built on size exclusion chromatography-sequential window acquisition of all theoretical mass spectrometry (SEC-SWATH-MS) data to predict protein complexes and characterize their changes across experimental conditions. We demonstrate improved performance of PCprophet over state-of-the-art approaches and introduce a Bayesian approach to analyze altered protein-protein interactions across conditions. We provide both command-line and graphical interfaces to support the application of PCprophet to any cofractionation MS dataset, independent of separation or quantitative liquid chromatography-MS workflow, for the detection and quantitative tracking of protein complexes and their physiological dynamics.


Subject(s)
Machine Learning , Proteins/chemistry , Proteomics , Software , Bayes Theorem , Chromatography, Gel , Databases, Protein , Protein Conformation
7.
Cell Syst ; 11(6): 589-607.e8, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33333029

ABSTRACT

Protein-protein interactions (PPIs) play critical functional and regulatory roles in cellular processes. They are essential for macromolecular complex formation, which in turn constitutes the basis for protein interaction networks that determine the functional state of a cell. We and others have previously shown that chromatographic fractionation of native protein complexes in combination with bottom-up mass spectrometric analysis of consecutive fractions supports the multiplexed characterization and detection of state-specific changes of protein complexes. In this study, we extend co-fractionation and mass spectrometric data analysis to perform quantitative, network-based studies of proteome organization, via the size-exclusion chromatography algorithmic toolkit (SECAT). This framework explicitly accounts for the dynamic nature and rewiring of protein complexes across multiple cell states and samples, thus, elucidating molecular mechanisms that are differentially implemented across different experimental settings. Systematic analysis of multiple datasets shows that SECAT represents a highly scalable and effective methodology to assess condition/state-specific protein-network state. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Mass Spectrometry/methods , Protein Interaction Maps/immunology , Proteomics/methods , Humans
8.
Nat Protoc ; 15(8): 2341-2386, 2020 08.
Article in English | MEDLINE | ID: mdl-32690956

ABSTRACT

Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translational biology. However, detection and quantification of protein complexes on a proteome-wide scale is technically challenging. We have recently extended the targeted proteomics rationale to the level of native protein complex analysis (complex-centric proteome profiling). The complex-centric workflow described herein consists of size exclusion chromatography (SEC) to fractionate native protein complexes, data-independent acquisition mass spectrometry to precisely quantify the proteins in each SEC fraction based on a set of proteotypic peptides and targeted, complex-centric analysis where prior information from generic protein interaction maps is used to detect and quantify protein complexes with high selectivity and statistical error control via the computational framework CCprofiler (https://github.com/CCprofiler/CCprofiler). Complex-centric proteome profiling captures most proteins in complex-assembled state and reveals their organization into hundreds of complexes and complex variants observable in a given cellular state. The protocol is applicable to cultured cells and can potentially also be adapted to primary tissue and does not require any genetic engineering of the respective sample sources. At present, it requires ~8 d of wet-laboratory work, 15 d of mass spectrometry measurement time and 7 d of computational analysis.


Subject(s)
Chromatography, Gel , Mass Spectrometry , Proteins/isolation & purification , Proteins/metabolism , Proteomics/methods , HEK293 Cells , Humans
9.
Cell Syst ; 10(2): 133-155.e6, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32027860

ABSTRACT

Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins. In proteomic studies, these have been treated as independent entities, disregarding their higher-level organization into complexes that affects their activity and/or function and is thus of great interest for biological research. Here, we describe the implementation of an integrated technique to quantify cell-state-specific changes in the physical arrangement of protein complexes concurrently for thousands of proteins and hundreds of complexes. Applying this technique to a comparison of human cells in interphase and mitosis, we provide a systematic overview of mitotic proteome reorganization. The results recall key hallmarks of mitotic complex remodeling and suggest a model of nuclear pore complex disassembly, which we validate by orthogonal methods. To support the interpretation of quantitative SEC-SWATH-MS datasets, we extend the software CCprofiler and provide an interactive exploration tool, SECexplorer-cc.


Subject(s)
Mitosis/genetics , Proteomics/methods , Tandem Mass Spectrometry/methods , Humans
10.
EMBO J ; 38(18): e101220, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31403225

ABSTRACT

Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) are encoded in the hundreds by the genomes of higher vertebrates, and many act with the heterochromatin-inducing KAP1 as repressors of transposable elements (TEs) during early embryogenesis. Yet, their widespread expression in adult tissues and enrichment at other genetic loci indicate additional roles. Here, we characterized the protein interactome of 101 of the ~350 human KZFPs. Consistent with their targeting of TEs, most KZFPs conserved up to placental mammals essentially recruit KAP1 and associated effectors. In contrast, a subset of more ancient KZFPs rather interacts with factors related to functions such as genome architecture or RNA processing. Nevertheless, KZFPs from coelacanth, our most distant KZFP-encoding relative, bind the cognate KAP1. These results support a hypothetical model whereby KZFPs first emerged as TE-controlling repressors, were continuously renewed by turnover of their hosts' TE loads, and occasionally produced derivatives that escaped this evolutionary flushing by development and exaptation of novel functions.


Subject(s)
Placenta/metabolism , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Animals , DNA Transposable Elements , Evolution, Molecular , Female , Fish Proteins/metabolism , Fishes/metabolism , HEK293 Cells , Humans , Pregnancy , Protein Interaction Maps , Repressor Proteins/chemistry , Zinc Fingers
11.
Mol Syst Biol ; 15(1): e8438, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30642884

ABSTRACT

Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper, we describe an integrated experimental and computational technique to quantify hundreds of protein complexes in a single operation. The method consists of size exclusion chromatography (SEC) to fractionate native protein complexes, SWATH/DIA mass spectrometry to precisely quantify the proteins in each SEC fraction, and the computational framework CCprofiler to detect and quantify protein complexes by error-controlled, complex-centric analysis using prior information from generic protein interaction maps. Our analysis of the HEK293 cell line proteome delineates 462 complexes composed of 2,127 protein subunits. The technique identifies novel sub-complexes and assembly intermediates of central regulatory complexes while assessing the quantitative subunit distribution across them. We make the toolset CCprofiler freely accessible and provide a web platform, SECexplorer, for custom exploration of the HEK293 proteome modularity.


Subject(s)
Chromatography, Gel/methods , Mass Spectrometry/methods , Multiprotein Complexes/analysis , Proteome/analysis , Proteomics/methods , Algorithms , Computational Biology/methods , HEK293 Cells , Humans , Multiprotein Complexes/metabolism , Protein Interaction Maps , Proteome/metabolism
12.
Nat Methods ; 14(9): 921-927, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28825704

ABSTRACT

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, as exemplified by the technique SWATH-MS, has emerged as a scalable method to achieve deep and consistent proteome coverage across large-scale data sets. We demonstrate that statistical concepts developed for discovery proteomics based on spectrum-centric scoring can be adapted to large-scale DIA experiments that have been analyzed with peptide-centric scoring strategies, and we provide guidance on their application. We show that optimal tradeoffs between sensitivity and specificity require careful considerations of the relationship between proteins in the samples and proteins represented in the spectral library. We propose the application of a global analyte constraint to prevent the accumulation of false positives across large-scale data sets. Furthermore, to increase the quality and reproducibility of published proteomic results, well-established confidence criteria should be reported for the detected peptide queries, peptides and inferred proteins.


Subject(s)
Data Interpretation, Statistical , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Peptide Mapping/methods , Proteins/chemistry , Sequence Analysis, Protein/methods , Computer Simulation , Models, Statistical , Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity
13.
Cell Rep ; 18(13): 3219-3226, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355572

ABSTRACT

Spatiotemporal organization of protein interactions in cell signaling is a fundamental process that drives cellular functions. Given differential protein expression across tissues and developmental stages, the architecture and dynamics of signaling interaction proteomes is, likely, highly context dependent. However, current interaction information has been almost exclusively obtained from transformed cells. In this study, we applied an advanced and robust workflow combining mouse genetics and affinity purification (AP)-SWATH mass spectrometry to profile the dynamics of 53 high-confidence protein interactions in primary T cells, using the scaffold protein GRB2 as a model. The workflow also provided a sufficient level of robustness to pinpoint differential interaction dynamics between two similar, but functionally distinct, primary T cell populations. Altogether, we demonstrated that precise and reproducible quantitative measurements of protein interaction dynamics can be achieved in primary cells isolated from mammalian tissues, allowing resolution of the tissue-specific context of cell-signaling events.


Subject(s)
Mass Spectrometry/methods , Signal Transduction , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cells, Cultured , GRB2 Adaptor Protein/metabolism , Mice , Protein Interaction Mapping , Reproducibility of Results , Time Factors
14.
PLoS One ; 11(4): e0153160, 2016.
Article in English | MEDLINE | ID: mdl-27054327

ABSTRACT

SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.


Subject(s)
Computational Biology/methods , Proteomics/methods , Peptides/analysis , Reproducibility of Results , Software
15.
Sci Data ; 1: 140031, 2014.
Article in English | MEDLINE | ID: mdl-25977788

ABSTRACT

Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).


Subject(s)
Databases, Protein , Mass Spectrometry/methods , Proteins/chemistry , Proteome , Humans , Proteome/chemistry , Proteomics/methods
16.
Appl Microbiol Biotechnol ; 97(6): 2473-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22588502

ABSTRACT

Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD(+) and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD(+) binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP(+). The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00 ± 0.13 U mg(-1) and a K m, NADP(+) of 0.147 ± 0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP(+)-accepting FDH (v max, 10.25 ± 1.63 U mg(-1)). However, the half-saturation constant for NADP(+) (K m, NADP(+) , 0.92 ± 0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.


Subject(s)
Coenzymes/metabolism , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Mutation, Missense , Mycobacterium/enzymology , Protein Engineering , Amino Acid Substitution , Binding Sites , Enzyme Stability , Formate Dehydrogenases/chemistry , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mycobacterium/genetics , NADP/metabolism , Protein Conformation
17.
J Biol Chem ; 286(32): 28584-98, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21685385

ABSTRACT

Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the "outer" (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1-7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1-5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance.


Subject(s)
Protein Folding , Protein Multimerization/physiology , Receptor, Muscarinic M3/metabolism , Amino Acid Motifs , Amino Acid Substitution , Animals , COS Cells , Chlorocebus aethiops , Humans , Mutagenesis , Peptide Mapping , Receptor, Muscarinic M3/genetics , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...