Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Genome ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593476

ABSTRACT

Course-based undergraduate research experiences (CUREs) increase student access to high impact research experiences. CUREs engage students in the scientific process by learning how to pose scientific questions, develop hypotheses, and generate data to test them. Environmental DNA (eDNA) is a growing field of research that is gaining accessibility through decreasing laboratory costs, which can make a foundation for multiple, engaging CUREs. This manuscript describes three case studies that used eDNA in an upper year undergraduate course. The first focusses on a systematic literature review of eDNA metadata reporting. The second describes the biomonitoring of brook trout in southern Ontario using eDNA. The third involves eDNA metabarcoding for freshwater fish detection in southern Ontario. Undergraduates were involved in the development and execution of experiments, scientific communication, the peer review process, and fundraising. Through this manuscript, we show the novel application of eDNA CUREs and provide a roadmap for other instructors interested in implementing similar projects. Interviews with seven students from these courses indicate the benefits experienced from taking these courses. We argue that the use of eDNA in CUREs should be expanded in undergraduate biology programs due to the benefit to students and the increasing accessibility of this technology.

2.
Front Endocrinol (Lausanne) ; 14: 1195733, 2023.
Article in English | MEDLINE | ID: mdl-37305042

ABSTRACT

Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.


Subject(s)
Strongylocentrotus purpuratus , Animals , Strongylocentrotus purpuratus/genetics , Ligands , Gene Expression Regulation , Thyroxine , Amino Acids , Integrins , Larva , Mammals
3.
Dev Biol ; 495: 21-34, 2023 03.
Article in English | MEDLINE | ID: mdl-36587799

ABSTRACT

Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 â€‹kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.


Subject(s)
Drosophila Proteins , Strongylocentrotus purpuratus , Animals , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/metabolism , Tight Junctions/genetics , Tight Junctions/metabolism , Epithelium/metabolism , Intercellular Junctions/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Sea Urchins/genetics , Sea Urchins/metabolism , Larva/genetics , Larva/metabolism
4.
J Exp Biol ; 225(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36412991

ABSTRACT

Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.


Subject(s)
Sea Urchins , Thyroid Hormones , Animals , Cell Death , Apoptosis , In Situ Nick-End Labeling , Larva
5.
BMC Bioinformatics ; 23(1): 415, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207678

ABSTRACT

BACKGROUND: Transcriptional regulation is a fundamental mechanism underlying biological functions. In recent years, a broad array of RNA-Seq tools have been used to measure transcription levels in biological experiments, in whole organisms, tissues, and at the single cell level. Collectively, this is a vast comparative dataset on transcriptional processes across organisms. Yet, due to technical differences between the studies (sequencing, experimental design, and analysis) extracting usable comparative information and conducting meta-analyses remains challenging. RESULTS: We introduce Comparative RNA-Seq Metadata Analysis Pipeline (CoRMAP), a meta-analysis tool to retrieve comparative gene expression data from any RNA-Seq dataset using de novo assembly, standardized gene expression tools and the implementation of OrthoMCL, a gene orthology search algorithm. It employs the use of orthogroup assignments to ensure the accurate comparison of gene expression levels between experiments and species. Here we demonstrate the use of CoRMAP on two mouse brain transcriptomes with similar scope, that were collected several years from each other using different sequencing technologies and analysis methods. We also compare the performance of CoRMAP with a functional mapping tool, previously published. CONCLUSION: CoRMAP provides a framework for the meta-analysis of RNA-Seq data from divergent taxonomic groups. This method facilitates the retrieval and comparison of gene expression levels from published data sets using standardized assembly and analysis. CoRMAP does not rely on reference genomes and consequently facilitates direct comparison between diverse studies on a range of organisms.


Subject(s)
Metadata , Transcriptome , Animals , Gene Expression Profiling/methods , Gene Expression Regulation , Mice , RNA-Seq , Sequence Analysis, RNA/methods
6.
Zoology (Jena) ; 152: 126011, 2022 06.
Article in English | MEDLINE | ID: mdl-35367700

ABSTRACT

Early development is highly susceptible to environmental influence. We evaluated the role of larval visual environment on brain morphology plasticity in late larval and juvenile stages of Bombina orientalis, an anuran amphibian changing from an aquatic to a terrestrial habitat after metamorphosis. Manipulation of the visual environment was achieved by rearing larvae in normal and darkened water. The juveniles were exposed to normal lighting conditions after metamorphosis, allowing to assess if plastic effects persisted or emerged after metamorphosis. The darkness treatment accelerated development before slowing it down substantially, allowing controls to metamorphose earlier. Although larvae reared in darkened water had the same relative brain size as controls by the end of the larval period, juveniles that had been reared in darkened water as larvae had brains that were 14.4% smaller than juveniles that had been reared under control conditions. Conversely, relative telencephalon size was 6.7% larger in juveniles previously reared in darkened water compared with controls, again with no effect of darkened water seen by the end of the larval period. Unlike the latent effects seen on whole brain and telencephalon size, relative size of the optic tectum was significantly smaller in both larvae and juveniles exposed to the darkened water treatment. Therefore, the effects of visual restriction on juvenile brain form were a combination of latent (whole brain and telencephalon) and carry-over (optic tectum) developmental effects.


Subject(s)
Anura , Metamorphosis, Biological , Animals , Brain , Ecosystem , Larva
7.
Mol Cell Endocrinol ; 539: 111468, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34610359

ABSTRACT

Nuclear receptors (NRs) are responsible for the regulation of diverse developmental and physiological systems in metazoans. NR actions can be the result of genomic and non-genomic mechanisms depending on whether they act inside or outside of the nucleus respectively. While the actions of both mechanisms have been shown to be crucial to NR functions, non-genomic actions are considered less frequently than genomic actions. Furthermore, hypotheses on the origin and evolution of non-genomic NR signaling pathways are rarely discussed in the literature. Here we summarize non-genomic NR signaling mechanisms in the context of NR protein family evolution and animal phyla. We find that NRs across groups and phyla act via calcium flux as well as protein phosphorylation cascades (MAPK/PI3K/PKC). We hypothesize and discuss a possible synapomorphy of NRs in the NR1 and NR3 families, including the thyroid hormone receptor, vitamin D receptor, ecdysone receptor, retinoic acid receptor, steroid receptors, and others. In conclusion, we propose that the advent of non-genomic NR signaling may have been a driving force behind the expansion of NR diversity in Cnidarians, Placozoans, and Bilaterians.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Calcium Signaling , Evolution, Molecular , Phosphorylation
8.
Neurobiol Learn Mem ; 184: 107502, 2021 10.
Article in English | MEDLINE | ID: mdl-34391934

ABSTRACT

Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.


Subject(s)
Anura/physiology , Brain/metabolism , Extinction, Psychological/physiology , Transcriptome , Animals , Brain/physiology , Conditioning, Operant/physiology , High-Throughput Nucleotide Sequencing , Transcriptome/physiology
9.
Biotechnol Biofuels ; 14(1): 104, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902681

ABSTRACT

BACKGROUND: Recirculating aquaculture systems (RAS) are an essential component of sustainable inland seafood production. Still, nutrient removal from these systems can result in substantial environmental problems, or present a major cost factor with few added value options. In this study, an innovative and energy-efficient algae based nutrient removal system (NRS) was developed that has the potential to generate revenue through algal commercialization. We optimized mass transfer in our NRS design using novel aeration and mixing technology, using air lift pumps and developed an original membrane cartridge for the continuous operation of nutrient removal and algae production. Specifically, we designed, manufactured and tested a 60-L NRS prototype. Based on specific airlift mixing conditions as well as concentration gradients, we assessed NRS nutrient removal capacity. We then examined the effects of different internal bioreactor geometries and radial orientations on the mixing efficiency. RESULTS: Using the start-up dynamic method, the overall mass transfer coefficient was found to be in the range of 0.00164-0.0074 [Formula: see text], depending on flow parameters and we confirmed a scaling relationship of mass transfer across concentration gradients. We found the optimal Reynolds number to be 500 for optimal mass transfer, as higher Reynolds numbers resulted in a relatively reduced increase of mass transfer. This relationship between mass transfer and Reynolds number is critical to assess scalability of our system. Our results demonstrate an even distribution of dissolved oxygen levels across the reactor core, demonstrating adequate mixing by the airlift pump, a critical consideration for optimal algal growth. Distribution of dissolved gases in the reactor was further assessed using flow visualization in order to relate the bubble distribution to the mass transfer capabilities of the reactor. We run a successful proof of principle trial using the green alga Dunaliella tertiolecta to assess mass transfer of nutrients across the membrane and biomass production. CONCLUSIONS: Manipulation of the concentration gradient across the membrane demonstrates a more prominent role of airlift mixing at higher concentration gradients. Specifically, the mass transfer rate increased threefold when the concentration gradient was increased 2.5-fold. We found that we can grow algae in the reactor chamber at rates comparable to those of other production systems and that the membrane scaffolds effectively remove nutrients form the wastewater. Our findings provide support for scalability of the design and support the use of this novel NRS for nutrient removal in aquaculture and potentially other applications.

10.
Methods Mol Biol ; 2219: 99-118, 2021.
Article in English | MEDLINE | ID: mdl-33074536

ABSTRACT

Trichoplax adhaerens is an enigmatic animal with an extraordinarily simple morphology and a cellular organization, which are the focus of current research. Protocols outlined here provide detailed descriptions of advanced techniques for light and electron microscopic studies of Trichoplax. Studies using these techniques have enhanced our understanding of cell type diversity and function in placozoans and have provided insight into the evolution, development, and physiology of this little understood group.


Subject(s)
Microscopy, Electron/methods , Microscopy/methods , Placozoa/ultrastructure , Animals , Cryopreservation/methods , Immunohistochemistry/methods , Microtomy/methods , Placozoa/cytology , Tissue Fixation/methods
11.
Methods Mol Biol ; 2219: 277-288, 2021.
Article in English | MEDLINE | ID: mdl-33074548

ABSTRACT

Trichoplax adhaerens is a member of the phylum Placozoa, an enigmatic group of benthic animals with remarkably simple morphology. While initial work on these organisms has primarily focused on their morphology and the development of genomic resources, Trichoplax has received increased attention as a model for studying the evolution of nervous and sensory systems. This work is motivated by the fact that Trichoplax features distinct behaviours and responses to environmental stimuli. Therefore, much progress has been made in recent years on the molecular, cellular, and behavioral understanding of this organism. Methods outlined here provide hands-on approaches to cutting edge molecular and cellular techniques to record cellular activities in Trichoplax.


Subject(s)
Calcium Channels, T-Type/metabolism , Patch-Clamp Techniques/methods , Placozoa/metabolism , Animals , Calcium Channels, T-Type/genetics , Cloning, Molecular/methods , HEK293 Cells , Humans , Placozoa/genetics , Transfection/methods
12.
Article in English | MEDLINE | ID: mdl-32835857

ABSTRACT

The release of pharmaceuticals and personal care products (PPCPs) into aquatic environments has been a major concern for the health of ecosystems. Transgenerational plasticity is a potential mechanism for organisms to respond to changing environmental conditions, including climate change and environmental contaminants. The purpose of the present study was to determine the long-term transgenerational effects of an abundant freshwater zooplankton, Daphnia magna, to acute embryonic exposures of serotonin re-uptake inhibitors (SSRI - fluoxetine and sertraline). Both SSRIs have been used extensively to treat depression and anxiety disorders for decades and persist in freshwater ecosystems at physiologically relevant concentrations. Our results revealed that even short (72 h) embryonic exposures of D. magna embryos had long lasting consequences on life history and expression of 5HT related genes in the unexposed generation (F3). Moreover, we identified direct effects of SSRIs on heart rate and swimming behavior in the first generation that carried over from embryonic exposure. We also found that SSRI exposure resulted in a transient increase of ephippia formation in the F1 and F2 . Our results suggest that SSRI exposure has transgenerational consequences to the unexposed generation and potentially beyond, even at low concentration (10-100× lower than what can be found in natural ecosystems) and as a result of embryonic exposure. Because of the short reproductive period of D. magna and their integral role in aquatic food webs, these findings have population-level implications and deserve further investigation.


Subject(s)
Daphnia/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Water Pollutants, Chemical/pharmacology , Animals , Daphnia/growth & development , Embryo, Nonmammalian , Female , Reproduction/drug effects
13.
Neuroreport ; 31(6): 490-497, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32243353

ABSTRACT

The origin and early evolution of neurotransmitter signaling in animals are unclear due to limited comparative information, primarily about prebilaterian animals. Here, we performed the comparative survey of signal molecules in placozoans - the simplest known free-living animals without canonical synapses, but with complex behaviors. First, using capillary electrophoresis with laser-induced fluorescence detection, we performed microchemical analyses of transmitter candidates in Trichoplax adhaerens - the classical reference species in comparative biology. We showed that the endogenous level of glycine (about 3 mM) was significantly higher than for other candidates such as L-glutamate, L-aspartate, or gamma-aminobutyric acid. Neither serotonin nor dopamine were detected. The absolute glycine concentrations in Trichoplax were even higher than we measured in ctenophores (Beroe) and cnidarians (Aequorea). We found that at millimolar concentrations of glycine (similar to the endogenous level), induced muscle-like contractions in free behaving animals. But after long incubation (24 h), 10 M of glycine could induce cytotoxicity and cell dissociation. In contrast, micromolar concentrations (10-10 M) increased Trichoplax ciliated locomotion, suggesting that glycine might act as an endogenous signal molecule. However, we showed than glycine (10 M) can also be a chemoattractant (a guiding factor for food sources), and therefore, act as the exogenous signal. These findings provide an evolutionary base for the origin of transmitters as a result of the interplay between exogenous and endogenous signaling systems early in animal evolution.


Subject(s)
Biological Evolution , Chemotactic Factors/metabolism , Glycine/metabolism , Placozoa/metabolism , Animals , Neurotransmitter Agents/metabolism , Signal Transduction/physiology
14.
Methods Cell Biol ; 150: 125-169, 2019.
Article in English | MEDLINE | ID: mdl-30777174

ABSTRACT

Echinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic echinoderms, we provide here our collective experience rearing these organisms, with suggestions to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing through metamorphosis in each of the four most commonly-studied echinoderm classes-asteroids, echinoids, holothuroids and ophiuroids.


Subject(s)
Echinodermata/cytology , Larva/cytology , Metamorphosis, Biological/physiology , Animals , Developmental Biology/methods
15.
Methods Cell Biol ; 150: 3-46, 2019.
Article in English | MEDLINE | ID: mdl-30777182

ABSTRACT

Echinoderms and especially echinoids have a rich history as model systems for the study of oogenesis, fertilization, and early embryogenesis. The ease of collecting and maintaining adults, as well as in obtaining gametes and culturing large quantities of synchronous embryos, is complemented by the ability to do biochemistry, reverse genetics, embryo manipulations and study gene regulatory networks. The diversity of species and developmental modes as well as unparalleled transparency in early developmental stages also makes echinoderms an excellent system in which to study evolutionary aspects of developmental biology. This chapter provides a practical guide to experimental methods for procuring adults and gametes, achieving synchronous in vitro fertilization, and culturing embryos through early larval stages for several echinoderm species representing four classes (Echinoidea, Asteroidea, Ophiuroidea, and Holothuroidea). We provide specific examples of protocols for obtaining adults and gametes and for culturing embryos of a selected number of species for experimental analysis of their development. The species were chosen to provide breadth across the phylum Echinodermata, as well as to provide practical guidelines for handling some of the more commonly studied species. For each species, we highlight specific advantages, and special note is made of key issues to consider when handling adults, collecting gametes, or setting and maintaining embryo cultures. Finally, information regarding interspecific crosses is provided.


Subject(s)
Echinodermata/cytology , Embryo, Nonmammalian/cytology , Oocytes/cytology , Animals , Biological Evolution , Culture Techniques/methods , Developmental Biology/methods , Gene Regulatory Networks/genetics , Larva/cytology
16.
Methods Cell Biol ; 150: 333-355, 2019.
Article in English | MEDLINE | ID: mdl-30777183

ABSTRACT

Sea urchin larvae deploy a complex immune system in the context of relatively simple morphology. Several types of phagocytic or granular immune cells respond rapidly to microbes and microbial components within the body cavity. Many of these cells also respond to microbial disturbances in the gut lumen. In the course of immune response, hundreds of genes are up- and downregulated, many of which have homologs involved in immunity in other species. Thus, the larval sea urchin provides an experimentally advantageous model for investigating the response to immune challenge at the level of cell behavior and gene regulatory networks. Importantly, the morphological simplicity and optical clarity of these larvae allow studies to be carried out within the intact animal. Here, we outline techniques to probe and visualize the immune system of the feeding sea urchin larva, particularly for quantifying gene expression and cell migration as the animal responds to both pathogens and symbionts. Techniques addressed in this chapter include (1) exposure of larvae to microbes and microbial products in sea water and by blastocoelar microinjection, (2) time-lapse imaging of immune response, (3) isolation of culturable bacteria associated with feeding larvae, (4) quantification of larval associations with isolated bacterial strains and (5) preparation of secreted products from isolated bacteria for testing in larval culture.


Subject(s)
Immunity/immunology , Larva/immunology , Sea Urchins/immunology , Animals , Cell Movement/immunology , Gene Regulatory Networks/immunology
17.
Front Neurosci ; 13: 1407, 2019.
Article in English | MEDLINE | ID: mdl-31992968

ABSTRACT

A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.

18.
Front Immunol ; 10: 3014, 2019.
Article in English | MEDLINE | ID: mdl-31993052

ABSTRACT

Exposure to and colonization by bacteria during development have wide-ranging beneficial effects on animal biology but can also inhibit growth or cause disease. The immune system is the prime mediator of these microbial interactions and is itself shaped by them. Studies using diverse animal taxa have begun to elucidate the mechanisms underlying the acquisition and transmission of bacterial symbionts and their interactions with developing immune systems. Moreover, the contexts of these associations are often confounded by stark differences between "wild type" microbiota and the bacterial communities associated with animals raised in conventional or germ-free laboratories. In this study, we investigate the spatio-temporal kinetics of bacterial colonization and associated effects on growth and immune function in larvae of the purple sea urchin (Strongylocentrotus purpuratus) as a model for host-microbe interactions and immune system development. We also compare the host-associated microbiota of developing embryos and larvae raised in natural seawater or exposed to adult-associated bacteria in the laboratory. Bacteria associated with zygotes, embryos, and early larvae are detectable with 16S amplicon sequencing, but 16S-FISH indicates that the vast majority of larval bacterial load is acquired after feeding begins and is localized to the gut lumen. The bacterial communities of laboratory-cultured embryos are significantly less diverse than the natural microbiota but recapitulate its major components (Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes), suggesting that biologically relevant host-microbe interactions can be studied in the laboratory. We also demonstrate that bacterial exposure in early development induces changes in morphology and in the immune system. In the absence of bacteria, larvae grow larger at the 4-arm stage. Additionally, bacteria-exposed larvae are significantly more resistant to lethal infection with the larva-associated pathogen Vibrio lentus suggesting that early exposure to high levels of microbes, as would be expected in natural conditions, affects the immune state in later larvae. These results expand our knowledge of microbial influences on early sea urchin development and establish a model in which to study the interactions between the developing larval immune system and the acquisition of larval microbiota.


Subject(s)
Bacterial Infections/immunology , Disease Resistance/immunology , Strongylocentrotus purpuratus/immunology , Strongylocentrotus purpuratus/microbiology , Vibrio Infections/immunology , Animals , Host Microbial Interactions/immunology , Larva/immunology , Larva/microbiology , Symbiosis/immunology , Vibrio
19.
Article in English | MEDLINE | ID: mdl-30127765

ABSTRACT

Thyroid hormones are important regulators of development and metabolism in animals. Their function via genomic and non-genomic actions is well-established in vertebrate species but remains largely elusive among invertebrates. Previous work suggests that thyroid hormones, principally 3,5,3',5'-Tetraiodo-L-thyronine (T4), regulate development to metamorphosis in sea urchins. Here we show that thyroid hormones, including T4, 3,5,3'-triiodo-l-thyronine (T3), and 3,5-Diiodothyronine (T2) accelerate initiation of skeletogenesis in sea urchin gastrulae and pluteus larvae of the sea urchin Strongylocentrotus purpuratus, as measured by skeletal spicule formation. Fluorescently conjugated hormones show T4 binding to primary mesenchyme cells in sea urchin gastrulae. Furthermore, our investigation of TH mediated skeletogenesis shows that Ets1, a transcription factor controlling initiation of skeletogenesis, is a target of activated (phosphorylated) mitogen-activated protein kinase [MAPK; extracellular signal-regulated kinase 1/2 (ERK1/2)]. As well, we show that PD98059, an inhibitor of ERK1/2 MAPK signaling, prevents the T4 mediated acceleration of skeletogenesis and upregulation of Ets1. In contrast, SB203580, an inhibitor of p38 MAPK signaling, did not inhibit the effect of T4. Immunohistochemistry revealed that T4 causes phosphorylation of ERK1/2 in presumptive primary mesenchyme cells and the basal membrane of epithelial cells in the gastrula. Pre-incubation of sea urchin gastrulae with RGD peptide, a competitive inhibitor of TH binding to integrins, inhibited the effect of T4 on skeletogenesis. Together, these experiments provide evidence that T4 acts via a MAPK- (ERK1/2) mediated integrin membrane receptor to accelerate skeletogenesis in sea urchin mesenchyme cells. These findings shed light, for the first time, on a putative non-genomic pathway of TH action in a non-chordate deuterostome and help elucidate the evolutionary history of TH signaling in animals.

20.
Results Probl Cell Differ ; 65: 137-161, 2018.
Article in English | MEDLINE | ID: mdl-30083919

ABSTRACT

Larvae are a diverse set of postembryonic life forms distinct from juveniles or adults that have evolved in many animal phyla. Echinoids (sea urchins and sand dollars) generate rapidly developing, morphologically simple, and optically transparent larvae and are a well-established model system supported by a broad array of genomic resources, experimental approaches, and imaging techniques. As such, they provide a unique opportunity to study postembryonic processes such as endocrine signaling, immunity, host-microbe interactions, and regeneration. Here we review a broad array of literature focusing on these important processes in sea urchin larvae, providing support for the claim that they represent excellent experimental study systems. Specifically, there is strong evidence emerging that endocrine signaling, immunity, and host-microbe interactions play major roles in larval development and physiology. Future research should take advantage of sea urchin larvae as a model to study these processes in more detail.


Subject(s)
Larva/growth & development , Models, Animal , Models, Biological , Sea Urchins/growth & development , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...