Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(5): 115, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691245

ABSTRACT

KEY MESSAGE: This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.


Subject(s)
Genotype , Hordeum , Phenotype , Photoperiod , Plant Breeding , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Alleles , Flowers/growth & development , Flowers/genetics , Chromosome Mapping , Genes, Plant , Polymorphism, Single Nucleotide , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Theor Appl Genet ; 137(6): 120, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709310

ABSTRACT

KEY MESSAGE: There is variation in stay-green within barley breeding germplasm, influenced by multiple haplotypes and environmental conditions. The positive genetic correlation between stay-green and yield across multiple environments highlights the potential as a future breeding target. Barley is considered one of the most naturally resilient crops making it an excellent candidate to dissect the genetics of drought adaptive component traits. Stay-green, is thought to contribute to drought adaptation, in which the photosynthetic machinery is maintained for a longer period post-anthesis increasing the photosynthetic duration of the plant. In other cereal crops, including wheat, stay-green has been linked to increased yield under water-limited conditions. Utilizing a panel of diverse barley breeding lines from a commercial breeding program we aimed to characterize stay-green in four environments across two years. Spatiotemporal modeling was used to accurately model senescence patterns from flowering to maturity characterizing the variation for stay-green in barley for the first time. Environmental effects were identified, and multi-environment trait analysis was performed for stay-green characteristics during grain filling. A consistently positive genetic correlation was found between yield and stay-green. Twenty-two chromosomal regions with large effect haplotypes were identified across and within environment types, with ten being identified in multiple environments. In silico stacking of multiple desirable haplotypes showed an opportunity to improve the stay-green phenotype through targeted breeding. This study is the first of its kind to model barley stay-green in a large breeding panel and has detected novel, stable and environment specific haplotypes. This provides a platform for breeders to develop Australian barley with custom senescence profiles for improved drought adaptation.


Subject(s)
Droughts , Haplotypes , Hordeum , Phenotype , Plant Breeding , Hordeum/genetics , Hordeum/growth & development , Environment , Photosynthesis/genetics , Quantitative Trait Loci , Chromosome Mapping
3.
Mol Plant ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38637991

ABSTRACT

Enviromics refers to the characterization of micro- and macroenvironments based on large-scale environmental datasets. By providing genotypic recommendations with predictive extrapolation at a site-specific level, enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate. Enviromics-based integration of statistics, envirotyping (i.e., classifying environmental factors), and remote sensing could help unravel the complex interplay of genetics, environment, and management (G × E × M). To support this goal, exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops. Already, informatics management platforms aggregate diverse environmental datasets obtained using optical, radar, and LiDAR sensors that capture detailed information about vegetation, surface structure, and terrain. This wealth of information, coupled with freely available climate data, fuels innovative enviromics research. While enviromics holds immense potential for sustainable breeding, a few obstacles remain, such as the need for 1) integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data; 2) state-of-the-art artificial intelligence (AI) models for data integration, simulation, and prediction; 3) cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders; and 4) collaboration and data sharing among farmers, breeders, physiologists, geoinformatics experts, and programmers across research institutions. Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.

4.
AoB Plants ; 16(2): plae021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38650718

ABSTRACT

Mungbean is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduce yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions was studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50 % flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96 % yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.

5.
Plant Genome ; 17(1): e20417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38066702

ABSTRACT

Genomic selection in sugarcane faces challenges due to limited genomic tools and high genomic complexity, particularly because of its high and variable ploidy. The classification of genotypes for single nucleotide polymorphisms (SNPs) becomes difficult due to the wide range of possible allele dosages. Previous genomic studies in sugarcane used pseudo-diploid genotyping, grouping all heterozygotes into a single class. In this study, we investigate the use of continuous genotypes as a proxy for allele-dosage in genomic prediction models. The hypothesis is that continuous genotypes could better reflect allele dosage at SNPs linked to mutations affecting target traits, resulting in phenotypic variation. The dataset included genotypes of 1318 clones at 58K SNP markers, with about 26K markers filtered using standard quality controls. Predictions for tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and fiber content (Fiber) were made using parametric, non-parametric, and Bayesian methods. Continuous genotypes increased accuracy by 5%-7% for CCS and Fiber. The pseudo-diploid parametrization performed better for TCH. Reproducing kernel Hilbert spaces model with Gaussian kernel and AK4 (arc-cosine kernel with hidden layer 4) kernel outperformed other methods for TCH and CCS, suggesting that non-additive effects might influence these traits. The prevalence of low-dosage markers in the study may have limited the benefits of approximating allele-dosage information with continuous genotypes in genomic prediction models. Continuous genotypes simplify genomic prediction in polyploid crops, allowing additional markers to be used without adhering to pseudo-diploid inheritance. The approach can particularly benefit high ploidy species or emerging crops with unknown ploidy.


Subject(s)
Saccharum , Saccharum/genetics , Bayes Theorem , Genotype , Phenotype , Genomics
6.
Front Plant Sci ; 14: 1260517, 2023.
Article in English | MEDLINE | ID: mdl-38023905

ABSTRACT

Mate-allocation strategies in breeding programs can improve progeny performance by harnessing non-additive genetic effects. These approaches prioritise predicted progeny merit over parental breeding value, making them particularly appealing for clonally propagated crops such as sugarcane. We conducted a comparative analysis of mate-allocation strategies, exploring utilising non-additive and heterozygosity effects to maximise clonal performance with schemes that solely consider additive effects to optimise breeding value. Using phenotypic and genotypic data from a population of 2,909 clones evaluated in final assessment trials of Australian sugarcane breeding programs, we focused on three important traits: tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and Fibre. By simulating families from all possible crosses (1,225) with 50 progenies each, we predicted the breeding and clonal values of progeny using two models: GBLUP (considering additive effects only) and extended-GBLUP (incorporating additive, non-additive, and heterozygosity effects). Integer linear programming was used to identify the optimal mate-allocation among selected parents. Compared to breeding value-based approaches, mate-allocation strategies based on clonal performance yielded substantial improvements, with predicted progeny values increasing by 57% for TCH, 12% for CCS, and 16% for fibre. Our simulation study highlights the effectiveness of mate-allocation approaches that exploit non-additive and heterozygosity effects, resulting in superior clonal performance. However, there was a notable decline in additive gain, particularly for TCH, likely due to significant epistatic effects. When selecting crosses based on clonal performance for TCH, the inbreeding coefficient of progeny was significantly lower compared to random mating, underscoring the advantages of leveraging non-additive and heterozygosity effects in mitigating inbreeding depression. Thus, mate-allocation strategies are recommended in clonally propagated crops to enhance clonal performance and reduce the negative impacts of inbreeding.

7.
BMC Plant Biol ; 23(1): 590, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008766

ABSTRACT

BACKGROUND: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS: YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS: This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.


Subject(s)
Basidiomycota , Triticum , Chromosome Mapping , Triticum/genetics , Disease Resistance/genetics , Australia , Nucleotides , Plant Diseases/genetics , Basidiomycota/genetics
8.
Front Plant Sci ; 14: 1221750, 2023.
Article in English | MEDLINE | ID: mdl-37936929

ABSTRACT

In modern plant breeding, genomic selection is becoming the gold standard to select superior genotypes in large breeding populations that are only partially phenotyped. Many breeding programs commonly rely on single-nucleotide polymorphism (SNP) markers to capture genome-wide data for selection candidates. For this purpose, SNP arrays with moderate to high marker density represent a robust and cost-effective tool to generate reproducible, easy-to-handle, high-throughput genotype data from large-scale breeding populations. However, SNP arrays are prone to technical errors that lead to failed allele calls. To overcome this problem, failed calls are often imputed, based on the assumption that failed SNP calls are purely technical. However, this ignores the biological causes for failed calls-for example: deletions-and there is increasing evidence that gene presence-absence and other kinds of genome structural variants can play a role in phenotypic expression. Because deletions are frequently not in linkage disequilibrium with their flanking SNPs, permutation of missing SNP calls can potentially obscure valuable marker-trait associations. In this study, we analyze published datasets for canola and maize using four parametric and two machine learning models and demonstrate that failed allele calls in genomic prediction are highly predictive for important agronomic traits. We present two statistical pipelines, based on population structure and linkage disequilibrium, that enable the filtering of failed SNP calls that are likely caused by biological reasons. For the population and trait examined, prediction accuracy based on these filtered failed allele calls was competitive to standard SNP-based prediction, underlying the potential value of missing data in genomic prediction approaches. The combination of SNPs with all failed allele calls or the filtered allele calls did not outperform predictions with only SNP-based prediction due to redundancy in genomic relationship estimates.

9.
Nat Microbiol ; 8(11): 2130-2141, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884814

ABSTRACT

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.


Subject(s)
Plant Diseases , Triticum , Phylogeny , Plant Diseases/microbiology , Triticum/microbiology , Australia
11.
Theor Appl Genet ; 136(5): 99, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027025

ABSTRACT

KEY MESSAGE: The reaction norm analysis of stability can be enhanced by partitioning the contribution of different types of G × E to the variation in slope. The slope of regression in a reaction norm model, where the performance of a genotype is regressed over an environmental covariable, is often used as a measure of stability of genotype performance. This method could be developed further by partitioning variation in the slope of regression into the two sources of genotype-by-environment interaction (G × E) which cause it: scale-type G × E (heterogeneity of variance) and rank-type G × E (heterogeneity of correlation). Because the two types of G × E have very different properties, separating their effect would enable a clearer understanding of stability. The aim of this paper was to demonstrate two methods which seek to achieve this in reaction norm models. Reaction norm models were fit to yield data from a multi-environment trial in Barley (Hordeum vulgare), with the adjusted mean yield from each environment used as the environmental covariable. Stability estimated from factor-analytic models, which can disentangle the two types of G × E and estimate stability based on rank-type G × E, was used for comparison. Adjusting the reaction norm slope to account for scale-type G × E using a genetic regression more than tripled the correlation with factor-analytic estimates of stability (0.24-0.26 to 0.80-0.85), indicating that it removed variation in the reaction norm slope that originated from scale-type G × E. A standardisation procedure had a more modest increase (055-0.59) but could be useful when curvilinear reaction norms are required. Analyses which use reaction norms to explore the stability of genotypes could gain additional insight into the mechanisms of stability by applying the methods outlined in this study.


Subject(s)
Environment , Gene-Environment Interaction , Models, Genetic , Plant Breeding , Genotype
12.
Theor Appl Genet ; 135(12): 4327-4336, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36173416

ABSTRACT

KEY MESSAGE: Stripe rust resistance gene YrAet672 from Aegilops tauschii accession CPI110672 encodes a nucleotide-binding and leucine-rich repeat domain containing protein similar to YrAS2388 and both these members were haplotypes of Yr28. New sources of host resistance are required to counter the continued emergence of new pathotypes of the wheat stripe rust pathogen Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst). Here, we show that CPI110672, an Aegilops tauschii accession from Turkmenistan, carries a single Pst resistance gene, YrAet672, that is effective against multiple Pst pathotypes, including the four predominant Pst lineages present in Australia. The YRAet672 locus was fine mapped to the short arm of chromosome 4D, and a nucleotide-binding and leucine-rich repeat gene was identified at the locus. A transgene encoding the YrAet672 genomic sequence, but lacking a copy of a duplicated sequence present in the 3' UTR, was transformed into wheat cultivar Fielder and Avocet S. This transgene conferred a weak resistance response, suggesting that the duplicated 3' UTR region was essential for function. Subsequent analyses demonstrated that YrAet672 is the same as two other Pst resistance genes described in Ae. tauschii, namely YrAS2388 and Yr28. They were identified as haplotypes encoding identical protein sequences but are polymorphic in non-translated regions of the gene. Suppression of resistance conferred by YrAet672 and Yr28 in synthetic hexaploid wheat lines (AABBDD) involving Langdon (AABB) as the tetraploid parent was associated with a reduction in transcript accumulation.


Subject(s)
Aegilops , Basidiomycota , Aegilops/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Chromosome Mapping , Leucine/genetics , Genes, Plant , Basidiomycota/physiology , Poaceae/genetics , Nucleotides
13.
Essays Biochem ; 66(5): 571-580, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35912968

ABSTRACT

Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.


Subject(s)
Basidiomycota , Disease Resistance , Basidiomycota/genetics , Crops, Agricultural/genetics , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Triticum/genetics
14.
Mol Plant ; 15(8): 1300-1309, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35754174

ABSTRACT

There are many challenges facing the development of high-yielding, nutritious crops for future environments. One limiting factor is generation time, which prolongs research and plant breeding timelines. Recent advances in speed breeding protocols have dramatically reduced generation time for many short-day and long-day species by optimizing light and temperature conditions during plant growth. However, winter crops with a vernalization requirement still require up to 6-10 weeks in low-temperature conditions before the transition to reproductive development. Here, we tested a suite of environmental conditions and protocols to investigate whether the vernalization process can be accelerated. We identified a vernalization method consisting of exposing seeds at the soil surface to an extended photoperiod of 22 h day:2 h night at 10°C with transfer to speed breeding conditions that dramatically reduces generation time in both winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare). Implementation of the speed vernalization protocol followed by speed breeding allowed the completion of up to five generations per year for winter wheat or barley, whereas only two generations can be typically completed under standard vernalization and plant growth conditions. The speed vernalization protocol developed in this study has great potential to accelerate biological research and breeding outcomes for winter crops.


Subject(s)
Edible Grain , Hordeum , Crops, Agricultural/genetics , Flowers , Gene Expression Regulation, Plant , Photoperiod , Plant Breeding , Triticum/genetics
15.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35748907

ABSTRACT

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Subject(s)
Aegilops , Basidiomycota , Aegilops/genetics , Amino Acids , Chromosome Mapping , Chromosomes, Plant , Diploidy , Disease Resistance/genetics , Genes, Plant , Haplotypes , Plant Diseases/genetics , Puccinia
16.
Front Plant Sci ; 13: 788593, 2022.
Article in English | MEDLINE | ID: mdl-35283883

ABSTRACT

Stripe rust caused by Puccnina striiformis (Pst) is an economically important disease attacking wheat all over the world. Identifying and deploying new genes for Pst resistance is an economical and long-term strategy for controlling Pst. A genome-wide association study (GWAS) using single nucleotide polymorphisms (SNPs) and functional haplotypes were used to identify loci associated with stripe rust resistance in synthetic-derived (SYN-DER) wheats in four environments. In total, 92 quantitative trait nucleotides (QTNs) distributed over 65 different loci were associated with resistance to Pst at seedling and adult plant stages. Nine additional loci were discovered by the linkage disequilibrium-based haplotype-GWAS approach. The durable rust-resistant gene Lr34/Yr18 provided resistance in all four environments, and against all the five Pst races used in this study. The analysis identified several SYN-DER accessions that carried major genes: either Yr24/Yr26 or Yr32. New loci were also identified on chr2B, chr5B, and chr7D, and 14 QTNs and three haplotypes identified on the D-genome possibly carry new alleles of the known genes contributed by the Ae. tauschii founders. We also evaluated eleven different models for genomic prediction of Pst resistance, and a prediction accuracy up to 0.85 was achieved for an adult plant resistance, however, genomic prediction for seedling resistance remained very low. A meta-analysis based on a large number of existing GWAS would enhance the identification of new genes and loci for stripe rust resistance in wheat. The genetic framework elucidated here for stripe rust resistance in SYN-DER identified the novel loci for resistance to Pst assembled in adapted genetic backgrounds.

18.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35113190

ABSTRACT

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Subject(s)
Basidiomycota , Triticum , Disease Resistance/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Triticum/genetics
19.
Plant Methods ; 18(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012581

ABSTRACT

BACKGROUND: The incorporation of root traits into elite germplasm is typically a slow process. Thus, innovative approaches are required to accelerate research and pre-breeding programs targeting root traits to improve yield stability in different environments and soil types. Marker-assisted selection (MAS) can help to speed up the process by selecting key genes or quantitative trait loci (QTL) associated with root traits. However, this approach is limited due to the complex genetic control of root traits and the limited number of well-characterised large effect QTL. Coupling MAS with phenotyping could increase the reliability of selection. Here we present a useful framework to rapidly modify root traits in elite germplasm. In this wheat exemplar, a single plant selection (SPS) approach combined three main elements: phenotypic selection (in this case for seminal root angle); MAS using KASP markers (targeting a root biomass QTL); and speed breeding to accelerate each cycle. RESULTS: To develop a SPS approach that integrates non-destructive screening for seminal root angle and root biomass, two initial experiments were conducted. Firstly, we demonstrated that transplanting wheat seedlings from clear pots (for seminal root angle assessment) into sand pots (for root biomass assessment) did not impact the ability to differentiate genotypes with high and low root biomass. Secondly, we demonstrated that visual scores for root biomass were correlated with root dry weight (r = 0.72), indicating that single plants could be evaluated for root biomass in a non-destructive manner. To highlight the potential of the approach, we applied SPS in a backcrossing program which integrated MAS and speed breeding for the purpose of rapidly modifying the root system of elite bread wheat line Borlaug100. Bi-directional selection for root angle in segregating generations successfully shifted the mean root angle by 30° in the subsequent generation (P ≤ 0.05). Within 18 months, BC2F4:F5 introgression lines were developed that displayed a full range of root configurations, while retaining similar above-ground traits to the recurrent parent. Notably, the seminal root angle displayed by introgression lines varied more than 30° compared to the recurrent parent, resulting in lines with both narrow and wide root angles, and high and low root biomass phenotypes. CONCLUSION: The SPS approach enables researchers and plant breeders to rapidly manipulate root traits of future crop varieties, which could help improve productivity in the face of increasing environmental fluctuations. The newly developed elite wheat lines with modified root traits provide valuable materials to study the value of different root systems to support yield in different environments and soil types.

20.
Curr Opin Biotechnol ; 73: 88-94, 2022 02.
Article in English | MEDLINE | ID: mdl-34348216

ABSTRACT

For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences. Here, we highlight that stepping up to meet this grand challenge will increasingly require thinking 'beyond the gene'. Significant progress has been made in understanding the contributions of both epigenetic variation and cis-regulatory variation to plant traits. This non-genic variation has great potential in future breeding, synthetic biology and biotechnology applications.


Subject(s)
Epigenomics , Plant Breeding , Biotechnology , Epigenesis, Genetic/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...