Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Nat Genet ; 56(5): 778-791, 2024 May.
Article in English | MEDLINE | ID: mdl-38689001

ABSTRACT

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.


Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypertension , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Female , Humans , Male , Blood Pressure/genetics , Genetic Risk Score , Hypertension/genetics , Risk Factors
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339038

ABSTRACT

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/pathology , alpha-Synuclein , Parkinsonian Disorders/pathology , Dopaminergic Neurons/pathology , Hypoxia/pathology , Oxygen
3.
J Transl Med ; 22(1): 59, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229174

ABSTRACT

BACKGROUND: Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS: In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS: Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS: These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.


Subject(s)
Induced Pluripotent Stem Cells , Mitochondrial Diseases , Neuroblastoma , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Parkinson Disease/genetics , Peptides
4.
Sci Rep ; 14(1): 2083, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267512

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN) is a biomarker for mitochondrial dysfunction associated with several diseases. Previous genome-wide association studies (GWAS) have been performed to unravel underlying mechanisms of mtDNA-CN regulation. However, the identified gene regions explain only a small fraction of mtDNA-CN variability. Most of this data has been estimated from microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci for qPCR-measured mtDNA-CN from three studies (16,130 participants) using GWAS, (2) identify potential systematic differences between our qPCR derived mtDNA-CN measurements compared to the published microarray intensity-based estimates, and (3) disentangle the nuclear from mitochondrial regulation of the mtDNA-CN phenotype. We identified two genome-wide significant autosomal loci associated with qPCR-measured mtDNA-CN: at HBS1L (rs4895440, p = 3.39 × 10-13) and GSDMA (rs56030650, p = 4.85 × 10-08) genes. Moreover, 113/115 of the previously published SNPs identified by microarray-based analyses were significantly equivalent with our findings. In our study, the mitochondrial genome itself contributed only marginally to mtDNA-CN regulation as we only detected a single rare mitochondrial variant associated with mtDNA-CN. Furthermore, we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on mtDNA-CN. However, our findings indicate that they do not exert any significant influence on our results.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations/genetics , Genome-Wide Association Study , Mitochondria/genetics , Genetic Loci , Gasdermins
5.
Arterioscler Thromb Vasc Biol ; 43(7): e254-e269, 2023 07.
Article in English | MEDLINE | ID: mdl-37128921

ABSTRACT

BACKGROUND: Antithrombin, PC (protein C), and PS (protein S) are circulating natural anticoagulant proteins that regulate hemostasis and of which partial deficiencies are causes of venous thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS were limited by modest sample sizes or by being restricted to candidate genes. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-analyzed across ancestries the results from 10 genome-wide association studies of plasma levels of antithrombin, PC, PS free, and PS total. METHODS: Study participants were of European and African ancestries, and genotype data were imputed to TOPMed, a dense multiancestry reference panel. Each of the 10 studies conducted a genome-wide association studies for each phenotype and summary results were meta-analyzed, stratified by ancestry. Analysis of antithrombin included 25 243 European ancestry and 2688 African ancestry participants, PC analysis included 16 597 European ancestry and 2688 African ancestry participants, PSF and PST analysis included 4113 and 6409 European ancestry participants. We also conducted transcriptome-wide association analyses and multiphenotype analysis to discover additional associations. Novel genome-wide association studies and transcriptome-wide association analyses findings were validated by in vitro functional experiments. Mendelian randomization was performed to assess the causal relationship between these proteins and cardiovascular outcomes. RESULTS: Genome-wide association studies meta-analyses identified 4 newly associated loci: 3 with antithrombin levels (GCKR, BAZ1B, and HP-TXNL4B) and 1 with PS levels (ORM1-ORM2). transcriptome-wide association analyses identified 3 newly associated genes: 1 with antithrombin level (FCGRT), 1 with PC (GOLM2), and 1 with PS (MYL7). In addition, we replicated 7 independent loci reported in previous studies. Functional experiments provided evidence for the involvement of GCKR, SNX17, and HP genes in antithrombin regulation. CONCLUSIONS: The use of larger sample sizes, diverse populations, and a denser imputation reference panel allowed the detection of 7 novel genomic loci associated with plasma antithrombin, PC, and PS levels.


Subject(s)
Protein C , Protein S , Protein C/genetics , Protein S/genetics , Genome-Wide Association Study , Antithrombins , Transcriptome , Anticoagulants , Antithrombin III/genetics , Polymorphism, Single Nucleotide
6.
NPJ Parkinsons Dis ; 9(1): 65, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072441

ABSTRACT

Homozygous or compound heterozygous (biallelic) variants in PRKN are causal for PD with highly penetrant symptom expression, while the much more common heterozygous variants may predispose to PD with highly reduced penetrance, through altered mitochondrial function. In the presence of pathogenic heterozygous variants, it is therefore important to test for mitochondrial alteration in cells derived from variant carriers to establish potential presymptomatic molecular markers. We generated lymphoblasts (LCLs) and human induced pluripotent stem cell (hiPSC)-derived neurons from non-manifesting heterozygous PRKN variant carriers and tested them for mitochondrial functionality. In LCLs, we detected hyperactive mitochondrial respiration, and, although milder compared to a biallelic PRKN-PD patient, hiPSC-derived neurons of non-manifesting heterozygous variant carriers also displayed several phenotypes of altered mitochondrial function. Overall, we identified molecular phenotypes that might be used to monitor heterozygous PRKN variant carriers during the prodromal phase. Such markers might also be useful to identify individuals at greater risk of eventual disease development and for testing potential mitochondrial function-based neuroprotective therapies before neurodegeneration advances.

7.
NPJ Parkinsons Dis ; 9(1): 44, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973269

ABSTRACT

In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.

8.
J Mol Biol ; 435(12): 168000, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36764358

ABSTRACT

Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.


Subject(s)
Ceramides , Parkinson Disease , Sphingolipids , Humans , Ceramides/metabolism , Dopaminergic Neurons/metabolism , Mitochondria/genetics , Mitochondria/pathology , Parkinson Disease/metabolism , Sphingolipids/metabolism
9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768321

ABSTRACT

Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mutation , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism
10.
Eur J Hum Genet ; 31(11): 1218-1227, 2023 11.
Article in English | MEDLINE | ID: mdl-36599941

ABSTRACT

Recall-by-genotype (RbG) research recruits participants previously involved in genetic research based on their genotype. RbG enables the further study of a particular variant of interest, but in recalling participants, it risks disclosing potentially unwanted or distressing genetic information. Any RbG strategy must therefore be done in a manner that addresses the potential ethical and social issues. As part of an RbG pilot on the penetrance of Parkinson's disease variants, we conducted an empirical mixed-method study with 51 participants of the Cooperative Health Research in South Tyrol (CHRIS) study to understand participant views on RbG research approach. Participants were disclosed the disease under investigation but not the individual variant carrier status. Results showed that participants filtered the information received through personal experience and enacted mechanisms to address the concerns raised by invitation by resorting to personal resources and the support provided by experts. While the non-disclosure of the Parkin variant carrier status was deemed acceptable, disclosing the disease under study was important for participants. Participant preferences for disclosure of the disease under investigation and the carrier status varied according to how the knowledge of individual carrier status was perceived to impact the participant's life. This study provided insights into participant response to the RbG research approach, which are relevant for RbG policy development. A suitable communication strategy and granular options addressing preferences for invitation in the original informed consent are critical for an ethically informed RbG policy.


Subject(s)
Disclosure , Informed Consent , Humans , Genotype
11.
Brain ; 146(7): 2753-2765, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36478228

ABSTRACT

Biallelic mutations in PINK1/PRKN cause recessive Parkinson's disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA integrity and inflammation as disease modifiers in carriers of mutations in these genes. Mitochondrial DNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson's disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mitochondrial DNA variant load (area under the curve = 0.83, CI 0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbour more heteroplasmic mitochondrial DNA variants in blood (P = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in induced pluripotent stem cell-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and post-mortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Last, the heteroplasmic mitochondrial DNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, P = 0.0074). PINK1/PRKN mutations predispose individuals to mitochondrial DNA variant accumulation in a dose- and disease-dependent manner.


Subject(s)
DNA, Mitochondrial , Parkinson Disease , Humans , DNA, Mitochondrial/genetics , Parkinson Disease/genetics , Heteroplasmy , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mutation/genetics
12.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361881

ABSTRACT

Mutations in the SZT2 gene have been associated with developmental and epileptic encephalopathy-18, a rare severe autosomal recessive neurologic disorder, characterized by psychomotor impairment/intellectual disability, dysmorphic facial features and early onset of refractory seizures. Here we report the generation of the first induced pluripotent stem cell (iPSC) lines from a patient with treatment-resistant epilepsy, carrying compound heterozygous mutations in SZT2 (Mut1: c.498G>T and Mut2: c.6553C>T), and his healthy heterozygous parents. Peripheral blood mononuclear cells were reprogrammed by a non-integrating Sendai virus-based reprogramming system. The generated human iPSC lines exhibited expression of the main pluripotency markers, the potential to differentiate into all three germ layers and presented a normal karyotype. These lines represent a valuable resource to study neurodevelopmental alterations, and to obtain mature, pathology-relevant neuronal populations as an in vitro model to perform functional assays and test the patient's responsiveness to novel antiepileptic treatments.


Subject(s)
Epilepsy, Generalized , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear , Mutation , Heterozygote , Nerve Tissue Proteins/metabolism
13.
J Affect Disord ; 316: 209-216, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35952933

ABSTRACT

BACKGROUND: Nociceptive pain modulation is related to psychological and psychiatric conditions. Evidence from clinical studies backs innate temperaments as potential precursors of mood symptoms and disorders, and pain sensitivity. Our study examines the modulation effect of affective temperaments on pain sensitivity in a general population adult sample, accounting for possible intervening mood symptoms, lifetime anxiety and depression, and pain treatments. METHODS: The sample is part of the CHRIS-AD study, Italy. Primary outcomes were the pain sensitivity questionnaire PSQ-total intensity score and the experimental pressure pain threshold (PPT). Affective temperaments were evaluated with the TEMPS-M. Lifetime depression, anxiety, current mood disorders, and treatments were self-reported via rating-scales. Directed acyclic graphs theory guided linear and mixed linear regression model analyses. RESULTS: Among 3804 participants (aged 18-65; response rate 78.4 %, females 53.3 %, mean age 38.4 years) for any given temperament, both the PSQ-total and the PPT were associated with temperament. The TEMPS-M four cyclothymic-related temperaments aligned on the pain-sensitive pole and the hyperthymic on the pain-resilient pole. The inclusion of current or lifetime mood symptoms, or pain drug use, as possible intervening pathways only partly diluted these associations, with stronger evidence for an effect of trait anxiety. LIMITATIONS: The main limitations were the lack of experimental measures of suprathreshold pain intensity perception, and detailed information on affective disorders in the study population. CONCLUSIONS: These findings support the hypothesis of a biological dichotomous diathesis of affective temperaments towards pain sensitivity; hyperthymic suggesting protection, whereas cyclothymic suggesting predisposition.


Subject(s)
Bipolar Disorder , Temperament , Adult , Affect , Bipolar Disorder/psychology , Cyclothymic Disorder/diagnosis , Cyclothymic Disorder/psychology , Female , Humans , Male , Pain Threshold , Personality Inventory , Surveys and Questionnaires
14.
Commun Biol ; 5(1): 580, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697829

ABSTRACT

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Creatinine , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney
15.
Front Aging Neurosci ; 14: 806000, 2022.
Article in English | MEDLINE | ID: mdl-35572147

ABSTRACT

Idiopathic Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons during aging. The pathological hallmark of PD is the Lewy body detected in postmortem brain tissue, which is mainly composed of aggregated α-Synuclein (αSyn). However, it is estimated that 90% of PD cases have unknown pathogenetic triggers. Here, we generated a new transgenic Caenorhabditis elegans PD model eraIs1 expressing green fluorescent protein- (GFP-) based reporter of human αSyn in DA neurons, and exhibited a nice readout of the developed αSyn inclusions in DA neurons, leading to their degeneration during aging. Using these animals in a preliminary reverse genetic screening of >100-PD genome-wide association study- (GWAS-) based susceptibility genes, we identified 28 orthologs of C. elegans and their inactivation altered the phenotype of eraIs1; 10 knockdowns exhibited reduced penetrance of αSyn:Venus inclusions formed in the axons of cephalic (CEP) DA neurons, 18 knockdowns exhibited increased penetrance of disrupted CEP dendrite integrity among which nine knockdowns also exhibited disrupted neuronal morphology independent of the expressed αSyn reporter. Loss-of-function alleles of the five identified genes, such as sac-2, rig-6 or lfe-2, unc-43, and nsf-1, modulated the corresponding eraIs1 phenotype, respectively, and supported the RNA interference (RNAi) data. The Western blot analysis showed that the levels of insoluble αSyn:Venus were not correlated with the observed phenotypes in these mutants. However, RNAi of 12 identified modulators reduced the formation of pro-aggregating polyglutamine Q40:YFP foci in muscle cells, suggesting the possible role of these genes in cellular proteotoxicity. Therefore, modulators identified by their associated biological pathways, such as calcium signaling or vesicular trafficking, represent new potential therapeutic targets for neurodegenerative proteopathies and other diseases associated with aging.

16.
Cell Mol Life Sci ; 79(5): 283, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35513611

ABSTRACT

Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson's disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.


Subject(s)
DNA, Mitochondrial , Parkinson Disease , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Dopaminergic Neurons/metabolism , Humans , Hybrid Cells/metabolism , Hybrid Cells/pathology , Mitochondria/metabolism , Parkinson Disease/pathology
17.
Stem Cell Res ; 60: 102713, 2022 04.
Article in English | MEDLINE | ID: mdl-35189566

ABSTRACT

The SNCA gene encodes the presynaptic α-synuclein (aSyn) protein, and its mutations are associated with autosomal dominant Parkinson's disease (PD). We describe the generation of an induced pluripotent stem cell (iPSC) line of a patient carrying a pathogenic Ala53Thr missense mutation in the SNCA gene. Human dermal fibroblasts were reprogrammed using a non-integrating episomal method. The generated iPSC line (EURACi014-A; iPS-1.1) shows expression of pluripotency markers, the potential to differentiate into all three germ layers, and a stable karyotype. Hence, this line represents a valuable resource for the study and modeling of the processes directly controlled by aSyn.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Mutation, Missense , Parkinson Disease/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
18.
Stem Cell Res ; 60: 102692, 2022 04.
Article in English | MEDLINE | ID: mdl-35121197

ABSTRACT

Mutations in the Parkin (PRKN) gene are the most frequent known cause of autosomal recessive early-onset Parkinson's disease (PD). Heterozygous mutations might predispose to disease with a highly reduced penetrance. We generated iPSC lines from two individuals carrying a heterozygous deletion of exon 7 in the PRKN gene and two controls from the same family. PBMCs were reprogrammed using non-integrating episomal plasmids. The iPSC lines exhibit expression of pluripotency markers, the potential to differentiate into the three germ layers, and a stable karyotype. These lines will serve to study mechanisms of reduced penetrance in heterozygous PRKN mutation carriers.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Exons/genetics , Heterozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Sci Rep ; 12(1): 574, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022422

ABSTRACT

High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.


Subject(s)
Blood Pressure , Computational Biology , Hypertension/blood , Phospholipids/blood , Adult , Aged , Biomarkers/blood , Cardiometabolic Risk Factors , Cohort Studies , Diastole , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Systole
20.
Open Res Eur ; 2: 23, 2022.
Article in English | MEDLINE | ID: mdl-37811477

ABSTRACT

Background: Parkin, which when mutated leads to early-onset Parkinson's disease, acts as an E3 ubiquitin ligase. How Parkin is regulated for selective protein and organelle targeting is not well understood. Here, we used protein interactor and genetic screens in Caenorhabditis elegans ( C. elegans) to identify new regulators of Parkin abundance and showed their impact on autophagy-lysosomal dynamics and alpha-Synuclein processing. Methods: We generated a transgene encoding mCherry-tagged C. elegans Parkin - Parkinson's Disease Related 1 (PDR-1). We performed protein interactor screen using Co-immunoprecipitation followed by mass spectrometry analysis to identify putative interacting partners of PDR-1. Ribonucleic acid interference (RNAi) screen and an unbiased mutagenesis screen were used to identify genes regulating PDR-1 abundance. Confocal microscopy was used for the identification of the subcellular localization of PDR-1 and alpha-Synuclein processing. Results: We show that the mCherry::pdr-1 transgene rescues the mitochondrial phenotype of pdr-1 mutants and that the expressed PDR-1 reporter is localized in the cytosol with enriched compartmentalization in the autophagy-lysosomal system. We determined that the transgenic overexpression of the PDR-1 reporter, due to inactivated small interfering RNA (siRNA) generation pathway, disrupts autophagy-lysosomal dynamics. From the RNAi screen of putative PDR-1 interactors we found that the inactivated Adenine Nucleotide Translocator ant-1.1/hANT, or hybrid ubiquitin genes ubq-2/h UBA52 and ubl-1/h RPS27A encoding a single copy of ubiquitin fused to the ribosomal proteins L40 and S27a, respectively, induced PDR-1 abundance and affected lysosomal dynamics. In addition, we demonstrate that the abundant PDR-1 plays a role in alpha-Synuclein processing. Conclusions: These data show that the abundant reporter of  C. elegans Parkin affects the autophagy-lysosomal system together with alpha-Synuclein processing which can help in understanding the pathology in Parkin-related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...