Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38221764

ABSTRACT

BACKGROUND: Cancer patients have increased morbidity and mortality from COVID-19, but may respond poorly to vaccination. The Evaluation of COVID-19 Vaccination Efficacy and Rare Events in Solid Tumors (EVEREST) study, comparing seropositivity between cancer patients and healthy controls in a low SARS-CoV-2 community-transmission setting, allows determination of vaccine response with minimal interference from infection. METHODS: Solid tumor patients from The Canberra Hospital, Canberra, Australia, and healthy controls who received COVID-19 vaccination between March 2021 and January 2022 were included. Blood samples were collected at baseline, pre-second vaccine dose and at 1, 3 (primary endpoint), and 6 months post-second dose. SARS-CoV-2 anti-spike-RBD (S-RBD) and anti-nucleocapsid IgG antibodies were measured. RESULTS: Ninety-six solid tumor patients and 20 healthy controls were enrolled, with median age 62 years, and 60% were female. Participants received either AZD1222 (65%) or BNT162b2 (35%) COVID-19 vaccines. Seropositivity 3 months post vaccination was 87% (76/87) in patients and 100% (20/20) in controls (p = .12). Seropositivity was observed in 84% of patients on chemotherapy, 80% on immunotherapy, and 96% on targeted therapy (differences not satistically significant). Seropositivity in cancer patients increased from 40% (6/15) after first dose, to 95% (35/37) 1 month after second dose, then dropped to 87% (76/87) 3 months after second dose. CONCLUSION: Most patients and all controls became seropositive after two vaccine doses. Antibody concentrations and seropositivity showed a decrease between 1 and 3 months post vaccination, highlighting need for booster vaccinations. SARS-CoV-2 infection amplifies S-RBD antibody responses; however, cannot be adequately identified using nucleocapsid serology. This underlines the value of our COVID-naïve population in studying vaccine immunogenicity.

2.
Blood ; 143(6): 535-547, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37992231

ABSTRACT

ABSTRACT: In humans, ∼0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC (P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is unknown. As a result of damage accumulated over their lifetime, RBCs nearing senescence exhibit physiological and molecular changes akin to those in platelet-binding RBCs in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senescence are targets for platelet binding and P-RBC formation. Confirming this hypothesis, pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC complexes in the most chronologically aged RBC population compared with younger cells. When reintroduced into mice, these complexes were selectively cleared from the bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circulation. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs, and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may contribute to the known risk of thrombosis in ITP and after splenectomy.


Subject(s)
Anemia, Sickle Cell , Malaria , Thrombocytopenia , Humans , Animals , Mice , Aged , Blood Platelets/metabolism , Erythrocytes/metabolism , Thrombocytopenia/metabolism , Anemia, Sickle Cell/metabolism
3.
Platelets ; 34(1): 2288213, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38031964

ABSTRACT

Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.


What do we know? Platelet receptor GPVI initiates platelet adhesion and aggregation and is proteolytically cleaved from the activated platelet surfaceThe metalloproteinases responsible belong to the ADAMs family of enzymes which are inhibited by TIMPsWhat did we discover? Plasma contains significant amounts of TIMP1 and TIMP2Circulating platelets bear significant amounts of TIMPs 1, 2, and 3Recombinant TIMP3 strongly inhibits resting and activated platelet ADAM10 activityExogenous addition of TIMP2 mildly blocked ligand-initiated shedding of GPVIWhat is the impact? TIMPs may modulate ADAM10 activity under resting conditions and stabilize GPVI levels in response to platelet activationAnti-GPVI agents are being evaluated as anti-thrombotic agents, however, acute loss of GPVI in trauma or settings of thrombocytopenia is linked with clinical bleedingUnderstanding how GPVI levels are regulated is important as agents that modulate GPVI function are emerging as important therapeutics for clinical applications in Thrombosis and Hemostasis fields.


Subject(s)
Blood Platelets , Platelet Membrane Glycoproteins , Humans , Ligands , ADAM10 Protein/genetics , Peptides/pharmacology , Metalloproteases , Platelet Activation , Membrane Proteins , Amyloid Precursor Protein Secretases
4.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461445

ABSTRACT

A common feature in patients with abdominal aortic aneurysms (AAA) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation impacts the pathogenesis of AAA. Using RNA-sequencing, we identify that the platelet-associated transcripts are significantly enriched in the ILT compared to the adjacent aneurysm wall and healthy control aortas. We found that the platelet specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of AAA patients. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in two independent AAA patient cohorts is highly predictive of a AAA diagnosis and associates more strongly with aneurysm growth rate when compared to D-dimer in humans. Finally, intervention with the anti-GPVI antibody (J) in mice with established aneurysms blunted the progression of AAA in two independent mouse models. In conclusion, we show that levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, where none currently exist. KEY POINTS: Soluble glycoprotein VI, which is a platelet-derived blood biomarker, predicts a diagnosis of AAA, with high sensitivity and specificity in distinguishing patients with fast from slow-growing AAA.Blockade of glycoprotein VI in mice with established aneurysms reduces AAA progression and mortality, indicating therapeutic potential.

5.
Blood Adv ; 6(11): 3494-3506, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35359002

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a severe prothrombotic complication of adenoviral vaccines, including the ChAdOx1 nCoV-19 (Vaxzevria) vaccine. The putative mechanism involves formation of pathological anti-platelet factor 4 (PF4) antibodies that activate platelets via the low-affinity immunoglobulin G receptor FcγRIIa to drive thrombosis and thrombocytopenia. Functional assays are important for VITT diagnosis, as not all detectable anti-PF4 antibodies are pathogenic, and immunoassays have varying sensitivity. Combination of ligand binding of G protein-coupled receptors (protease-activated receptor-1) and immunoreceptor tyrosine-based activation motif-linked receptors (FcγRIIa) synergistically induce procoagulant platelet formation, which supports thrombin generation. Here, we describe a flow cytometry-based procoagulant platelet assay using cell death marker GSAO and P-selectin to diagnose VITT by exposing donor whole blood to patient plasma in the presence of a protease-activated receptor-1 agonist. Consecutive patients triaged for confirmatory functional VITT testing after screening using PF4/heparin ELISA were evaluated. In a development cohort of 47 patients with suspected VITT, plasma from ELISA-positive patients (n = 23), but not healthy donors (n = 32) or individuals exposed to the ChAdOx1 nCov-19 vaccine without VITT (n = 24), significantly increased the procoagulant platelet response. In a validation cohort of 99 VITT patients identified according to clinicopathologic adjudication, procoagulant flow cytometry identified 93% of VITT cases, including ELISA-negative and serotonin release assay-negative patients. The in vitro effect of intravenous immunoglobulin (IVIg) and fondaparinux trended with the clinical response seen in patients. Induction of FcγRIIa-dependent procoagulant response by patient plasma, suppressible by heparin and IVIg, is highly indicative of VITT, resulting in a sensitive and specific assay that has been adopted as part of a national diagnostic algorithm to identify vaccinated patients with platelet-activating antibodies.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Thrombosis , ChAdOx1 nCoV-19 , Flow Cytometry , Heparin/therapeutic use , Humans , Immunoglobulins, Intravenous/adverse effects , Platelet Factor 4 , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Receptors, Proteinase-Activated/therapeutic use , Thrombocytopenia/diagnosis , Thrombosis/drug therapy
6.
J Infect Dis ; 223(1): 10-14, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33009908

ABSTRACT

Estimates of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been hampered by inadequate assay sensitivity and specificity. Using an enzyme-linked immunosorbent assay-based approach that combines data about immunoglobulin G responses to both the nucleocapsid and spike receptor binding domain antigens, we show that excellent sensitivity and specificity can be achieved. We used this assay to assess the frequency of virus-specific antibodies in a cohort of elective surgery patients in Australia and estimated seroprevalence in Australia to be 0.28% (95% Confidence Interval, 0-1.15%). These data confirm the low level of transmission of SARS-CoV-2 in Australia before July 2020 and validate the specificity of our assay.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Seroepidemiologic Studies , Antigens, Viral/immunology , Australia , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/analysis , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
7.
Arterioscler Thromb Vasc Biol ; 41(1): 478-490, 2021 01.
Article in English | MEDLINE | ID: mdl-33147989

ABSTRACT

OBJECTIVE: Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. Approach and Results: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- and gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS: Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulated.


Subject(s)
Blood Platelets/metabolism , Blood Proteins/metabolism , Obesity/blood , Phosphoproteins/blood , Platelet Activation , Proteomics , Signal Transduction , Adult , Body Mass Index , Case-Control Studies , Female , Humans , Male , Middle Aged , Obesity/diagnosis , Phosphorylation , Severity of Illness Index , Up-Regulation
8.
Physiol Rep ; 8(22): e14647, 2020 11.
Article in English | MEDLINE | ID: mdl-33230967

ABSTRACT

Bikram yoga is practiced in a room heated to 105°F with 40% humidity for 90 min. During the class a large volume of water and electrolytes are lost in the sweat, specifically, sodium is lost, the main cation of the extracellular fluid. There is little known about the volume of sweat and the amount of sodium lost in sweat during Bikram yoga or the optimum quantity of fluid required to replace these losses. The participants who took part in this small feasibility study were five females with a mean age of 47.4 ± 4.7 years and 2.6 ± 1.6 years of experience at Bikram yoga. The total body weight, water consumed, serum sodium concentration, serum osmolality, and serum aldosterone levels were all measured before and after a Bikram yoga practice. Sweat sodium chloride concentration and osmolality were measured at the end of the practice. The mean estimated sweat loss was 1.54 ± 0.65 L, while the amount of water consumed during Bikram yoga was 0.38 ± 0.22 L. Even though only 25% of the sweat loss was replenished with water intake during the Bikram yoga class, we did not observe a change in serum sodium levels or serum osmolality. The sweat contained 82 ± 16 mmol/L of sodium chloride for an estimated total of 6.8 ± 2.1 g of sodium chloride lost in the sweat. The serum aldosterone increased 3.5-fold from before to after Bikram yoga. There was a decrease in the extracellular body fluid compartment of 9.7%. Sweat loss in Bikram yoga predominately produced a volume depletion rather than the dehydration of body fluids. The sweating-stimulated rise in serum aldosterone levels will lead to increased sodium reabsorption from the kidney tubules and restore the extracellular fluid volume over the next 24 hr.


Subject(s)
Sweating , Water-Electrolyte Balance , Yoga , Adult , Aged , Aldosterone/blood , Chlorides/blood , Chlorides/metabolism , Female , Humans , Middle Aged , Sodium/blood , Sodium/metabolism , Sweat/metabolism
9.
Clin Sci (Lond) ; 134(21): 2807-2822, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33140828

ABSTRACT

Platelets have a predominant role in haemostasis, the maintenance of blood volume and emerging roles as innate immune cells, in wound healing and in inflammatory responses. Platelets express receptors that are important for platelet adhesion, aggregation, participation in inflammatory responses, and for triggering degranulation and enhancing thrombin generation. They carry a cargo of granules bearing enzymes, adhesion molecules, growth factors and cytokines, and have the ability to generate reactive oxygen species. The platelet is at the frontline of a host of cellular responses to invading pathogens, injury, and infection. Perhaps because of this intrinsic responsibility of a platelet to rapidly respond to thrombotic, pathological and immunological factors as part of their infantry role; platelets are susceptible to targeted attack by the adaptive immune system. Such attacks are often transitory but result in aberrant platelet activation as well as significant loss of platelet numbers and platelet function, paradoxically leading to elevated risks of both thrombosis and bleeding. Here, we discuss the main molecular events underlying immune-based platelet disorders with specific focus on events occurring at the platelet surface leading to activation and clearance.


Subject(s)
Blood Platelet Disorders/genetics , Blood Platelet Disorders/immunology , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Endothelial Cells/pathology , Hemostasis , Humans , Models, Biological
11.
Complement Ther Med ; 51: 102417, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32507433

ABSTRACT

It has been hypothesized that sweat loss during exercise causes a disruption in calcium homeostasis that activates bone resorption and over time leads to low bone mineral density. The purpose of this small pilot study was to determine whether dermal calcium loss from a bout of excessive sweating during light intensity physical activity triggers an increase in biomarkers of bone resorption. Biochemical markers related to bone homeostasis were measured before and after a 90 min Bikram hot yoga practice performed in a room heated to 105 °F with 40 % humidity. Participants were five females with a mean age of 47.4 ± 4.7 years. Nude body weight, serum total calcium (Ca2+), free ionized calcium, albumin, parathyroid hormone (PTH) and CTX-I were measured before and after a Bikram hot yoga practice. Mean estimated sweat loss was 1.54 ± 0.65 L, which elicited a 1.9 ± 0.9 % decrease in participant's body weight. Mean Ca2+ concentration in sweat was 2.9 ± 1.7 mg/dl and the estimated mean total calcium lost was 41.3 ± 16.4 mg. Serum ionized Ca2+ increased from 4.76 ± 0.29 mg/dl to 5.35 ± 0.36 mg/dl after the Bikram hot yoga practice (p = 0.0118). Serum PTH decreased from pre- 33.9 ± 3.3 pg/ml to post- 29.9 ± 2.1 pg/ml yoga practice (p = 0.0015) when adjusted for hemoconcentration (PTHADJ), implying a decrease in PTH secretion. We conclude that calcium loss in sweat during 90 min of Bikram hot yoga did not trigger an increase in PTH secretion and did not initiate bone resorption.


Subject(s)
Bone Resorption/blood , Calcium/blood , Parathyroid Hormone/blood , Sweating , Yoga , Adult , Aged , Female , Hot Temperature , Humans , Middle Aged , Pilot Projects , Sweat/chemistry
12.
J Thromb Haemost ; 18(6): 1447-1458, 2020 06.
Article in English | MEDLINE | ID: mdl-32198957

ABSTRACT

BACKGROUND: Collagen and fibrin engagement and activation of glycoprotein (GP) VI induces proteolytic cleavage of the GPVI ectodomain generating shed soluble GPVI (sGPVI). Collagen-mediated GPVI shedding requires intracellular signalling to release the sGPVI, mediated by A Disintegrin And Metalloproteinase 10 (ADAM10); however, the precise mechanism by which fibrin induces GPVI shedding remains elusive. Plasma sGPVI levels are elevated in patients with coagulopathies, sepsis, or inflammation and can predict onset of sepsis and sepsis-related mortality; therefore, it is clinically important to understand the mechanisms of GPVI shedding under conditions of minimal collagen exposure. OBJECTIVES: Our aim was to characterize mechanisms by which fibrin-GPVI interactions trigger GPVI shedding. METHODS: Platelet aggregometry, sGPVI ELISA, and an ADAM10 fluorescence resonance energy transfer assay were used to measure fibrin-mediated platelet responses. RESULTS: Fibrin induced αIIbß3-independent washed platelet aggregate formation, GPVI shedding, and increased ADAM10 activity, all of which were insensitive to pre-treatment with inhibitors of Src family kinases but were divalent cation- and metalloproteinase-dependent. In contrast, treatment of washed platelets with other GPVI ligands, collagen, and collagen-related peptide caused αIIbß3-dependent platelet aggregation and GPVI release but did not increase constitutive ADAM10 activity. CONCLUSIONS: Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.


Subject(s)
Fibrin , Platelet Membrane Glycoproteins , ADAM10 Protein , Amyloid Precursor Protein Secretases , Blood Platelets , Humans , Membrane Proteins , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex
13.
Platelets ; 31(3): 315-321, 2020.
Article in English | MEDLINE | ID: mdl-32054377

ABSTRACT

Diagnosis of immune thrombocytopenia (ITP) and prediction of response to therapy remain significant and constant challenges in hematology. In patients who present with ITP, the platelet count is frequently used as a surrogate marker for disease severity, and so often determines the need for therapy. Although there is a clear link between thrombocytopenia and hemostasis, a direct correlation between the extent of thrombocytopenia and bleeding symptoms, especially at lower platelet counts is lacking. Thus, bleeding in ITP is heterogeneous, unpredictable, and nearly always based on a multitude of risk factors, beyond the platelet count. The development of an evidence-based, validated risk stratification model for ITP treatment is a major goal in the ITP community and this review discusses new laboratory approaches to evaluate the various pathobiologies of ITP that may inform such a model.


Subject(s)
Disease Susceptibility , Purpura, Thrombocytopenic, Idiopathic/etiology , Research/trends , Animals , Biomarkers , Blood Platelets/immunology , Blood Platelets/metabolism , Blood Platelets/pathology , Disease Susceptibility/immunology , Humans , Immune System/immunology , Immune System/metabolism , Megakaryocytes/immunology , Megakaryocytes/metabolism , Megakaryocytes/pathology , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Purpura, Thrombocytopenic, Idiopathic/metabolism , Purpura, Thrombocytopenic, Idiopathic/therapy
14.
Toxicol Sci ; 82(1): 26-33, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15282406

ABSTRACT

Coumarin-induced mouse Clara cell toxicity is thought to result from the local formation of coumarin 3,4-epoxide (CE). However, this toxicity is not observed in the rat, indicating species differences in coumarin metabolism. The purpose of the present work was to characterize the in vitro kinetics of coumarin metabolism in mouse, rat, and human whole lung microsomes, and to determine whether species differences in coumarin-induced Clara cell toxicity correlate with coumarin epoxidation or detoxification. In B6C3F1 mouse lung microsomes, coumarin was metabolized to CE, which in the absence of glutathione spontaneously rearranges to o-hydroxyphenylacetaldehyde (o-HPA). The K(m) and V(max) for o-HPA formation were 155 microM and 7.3 nmol/min/mg protein, respectively. In contrast, the K(m) and V(max) were 2573 microM and 1.75 nmol/min/mg protein, respectively, in F344 rat lung microsomes. Since the intrinsic clearance through the epoxidation pathway was 69 times higher in the mouse, the epoxidation rate was shown to correlate with species sensitivity to toxicity. To determine whether detoxification reactions contribute to species differences in toxicity, the fate of CE and o-HPA were examined. Detoxification of CE via conjugation with glutathione was evaluated in lung cytosol from mice and rats, and the K(m) of this reaction was approximately 800 microM in both species, whereas the V(max) was 3.5 and 6 nmol/min/mg protein, respectively, indicating that conjugation is faster in the rat. Oxidation of o-HPA to o-hydroxyphenylacetic acid (o-HPAA) was examined in lung cytosol from mice and rats. The K(m) of this reaction was approximately 1.5 microM in both species, whereas the V(max) was 0.08 and 0.33 nmol/min/mg protein in mice and rats, respectively, indicating that oxidation is faster in the rat. While the rate of epoxidation correlates with species sensitivity to coumarin, it is likely that Clara cell toxicity is modulated by CE and o-HPA detoxification. In contrast to rodent lung microsomes, bioactivation of coumarin to o-HPA did not occur in 16 different human lung microsomes, which suggests metabolism-dependent toxicity in the human lung is unlikely following low level coumarin exposure.


Subject(s)
Anticoagulants/pharmacokinetics , Anticoagulants/toxicity , Coumarins/metabolism , Coumarins/pharmacokinetics , Coumarins/toxicity , Epithelial Cells/metabolism , Animals , Epithelial Cells/drug effects , Female , Inactivation, Metabolic , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Species Specificity
15.
Toxicol Sci ; 80(2): 249-57, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15141102

ABSTRACT

Hepatotoxicity of coumarin is attributed to metabolic activation to an epoxide intermediate, coumarin 3,4-epoxide (CE). However, whereas rats are most susceptible to coumarin-induced hepatotoxicity, formation of CE is greatest in mouse liver microsomes, a species showing little evidence of hepatotoxicity. Therefore, the present work was designed to test the hypothesis that detoxification of CE is a major determinant of coumarin hepatotoxicity. CE can either rearrange spontaneously to o-hydroxyphenylacetaldehyde (o-HPA) or be conjugated with gluatathione (GSH). o-HPA is hepatotoxic and is further detoxified by oxidation to o-hydroxyphenylacetic acid (o-HPAA). In vitro experiments were conducted using mouse liver microsomes to generate a constant amount of CE, and cytosols from F344 rats, B6C3F1 mice, and human liver were used to characterize CE detoxification. All metabolites were quantified by HPLC methods with UV detection. In rats and mice, GSH conjugation occurred non-enzymatically and through glutathione-S-transferases (GSTs), and the kinetics of GSH conjugation were similar in rats and mice. In rat liver cytosol, oxidation of o-HPA to o-HPAA was characterized with a high affinity K(m) of approximately 12 microM, and a V(max) of approximately 1.5 nmol/min/mg protein. In contrast, the K(m) and V(max) for o-HPA oxidation in mouse liver cytosol were approximately 1.7 microM and 5 nmol/min/mg protein, respectively, yielding a total intrinsic clearance through oxidation to o-HPAA that was 20 times higher in mouse than in rats. Human cytosols (two separate pools) detoxified CE through o-HPA oxidation with an apparent K(m) of 0.84 microM and a V(max) of 5.7 nmol/min/mg protein, for a net intrinsic clearance that was more than 50 times higher than the rat. All species also reduced o-HPA to o-hydroxyphenylethanol (o-HPE), but this was only a major reaction in rats. In the presence of a metabolic reaction replete with all necessary cofactors, GSH conjugation accounted for nearly half of all CE metabolites in rat and mouse, whereas the GSH conjugate represented only 10% of the metabolites in human cytosol. In mouse, o-HPAA represented the major ring-opened metabolite, accounting for the remaining 50% of metabolites, and in human cytosol, o-HPAA was the major metabolite, representing nearly 90% of all CE metabolites. In contrast, no o-HPAA was detected in rats, whereas o-HPE represented a major metabolite. Collectively, these in vitro data implicate o-HPA detoxification through oxidation to o-HPAA as the major determinant of species differences in coumarin-induced hepatotoxicity.


Subject(s)
Acetaldehyde/analogs & derivatives , Anticoagulants/pharmacokinetics , Anticoagulants/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Coumarins/pharmacokinetics , Coumarins/toxicity , Acetaldehyde/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Oxidase/metabolism , Animals , Coumarins/metabolism , Cytosol/enzymology , Cytosol/metabolism , Female , Glutathione/metabolism , Humans , Inactivation, Metabolic , Indicators and Reagents , Male , Mice , Microsomes, Liver/metabolism , Oxidation-Reduction , Phenylacetates/metabolism , Rats , Rats, Inbred F344 , Species Specificity
16.
Toxicology ; 187(2-3): 217-28, 2003 May 03.
Article in English | MEDLINE | ID: mdl-12699910

ABSTRACT

Immunohistochemical methods have been widely used to determine the histogenesis of spontaneous and chemically-induced mouse lung tumors. Typically, antigens for either alveolar Type II cells or bronchiolar epithelial Clara cells are studied. In the present work, the morphological and immunohistochemical phenotype of a transgenic mouse designed to develop lung tumors arising from Clara cells was evaluated. In this model, Clara cell-specific transformation is accomplished by directed expression of the SV40 large T antigen (TAg) under the mouse Clara cell secretory protein (CC10) promoter. In heterozygous mice, early lesions at 1 month of age consisted of hyperplastic bronchiolar epithelial cells. These progressed to adenoma by 2 months as proliferating epithelium extended into adjacent alveolar spaces. By 4 months, a large portion of the lung parenchyma was composed of tumor masses. Expression of constitutive CC10 was diminished in transgenic animals at all time points. Only the occasional cell or segment of the bronchiolar epithelium stained positively for CC10 by immunohistochemistry, and all tumors were found to be uniformly negative for staining. These results were corroborated by Western blotting, where CC10 was readily detectable in whole lung homogenate from nontransgenic animals, but not detected in lung from transgenic animals at any time point. Tumors were also examined for expression of surfactant apoprotein C (SPC), an alveolar Type II cell-specific marker, and found to be uniformly negative for staining. These results indicate that, in this transgenic model, expression of CC10, which is widely used to determine whether lung tumors arise from Clara cells, was reduced and subsequently lost during Clara cell tumor progression.


Subject(s)
Adenocarcinoma/pathology , Disease Models, Animal , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proteins/immunology , Proteins/metabolism , Uteroglobin , Animals , Antigens, Polyomavirus Transforming/physiology , Bronchi/immunology , Bronchi/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Viral/genetics , Gene Expression , Genotype , Heterozygote , Hyperplasia/pathology , Immunohistochemistry , Lung Neoplasms/genetics , Mice , Mice, Transgenic , Promoter Regions, Genetic , Time Factors
17.
Toxicol Sci ; 67(1): 38-45, 2002 May.
Article in English | MEDLINE | ID: mdl-11961214

ABSTRACT

The purpose of the present experiments was to test the hypothesis that diethanolamine (DEA), an alkanolamine shown to be hepatocarcinogenic in mice, induces hepatic choline deficiency and to determine whether altered choline homeostasis was causally related to the carcinogenic outcome. To examine this hypothesis, the biochemical and histopathological changes in male B6C3F1 mice made choline deficient by dietary deprivation were first determined. Phosphocholine (PCho), the intracellular storage form of choline was severely depleted, decreasing to about 20% of control values with 2 weeks of dietary choline deficiency. Other metabolites, including choline, glycerophosphocholine (GPC), and phosphatidylcholine (PC) also decreased. Hepatic concentrations of S-adenosylmethionine (SAM) decreased, whereas levels of S-adenosylhomocysteine (SAH) increased. Despite these biochemical changes, fatty liver, which is often associated with choline deficiency, was not observed in the mice. The dose response, reversibility, and strain-dependence of the effects of DEA on choline metabolites were studied. B6C3F1 mice were dosed dermally with DEA (0, 10, 20, 40, 80, and 160 mg/kg) for 4 weeks (5 days/week). Control animals received either no treatment or dermal application of 95% ethanol (1.8 ml/kg). PCho was most sensitive to DEA treatment, decreasing at dosages of 20 mg/kg and higher and reaching a maximum 50% depletion at 160 mg/kg/day. GPC, choline, and PC also decreased in a dose-dependent manner. At 80 and 160 mg/kg/day, SAM levels decreased while SAH levels increased in liver. A no-observed effect level (NOEL) for DEA-induced changes in choline homeostasis was 10 mg/kg/day. Choline metabolites, SAM and SAH returned to control levels in mice dosed at 160 mg/kg for 4 weeks and allowed a 2-week recovery period prior to necropsy. In a manner similar to dietary choline deficiency, no fatty change was observed in the liver of DEA-treated mice. In C57BL/6 mice, DEA treatment (160 mg/kg) also decreased PCho concentrations, without affecting hepatic SAM levels, suggesting that strain-specific differences in intracellular methyl group regulation may influence carcinogenic outcome with DEA treatment. Finally, in addition to the direct effects of DEA on choline homeostasis, dermal application of 95% ethanol for 4 weeks decreased hepatic betaine levels, suggesting that the use of ethanol as a vehicle for dermal application of DEA may exacerbate or confound the biochemical actions of DEA alone. Collectively, the results demonstrate that DEA treatment causes a spectrum of biochemical changes consistent with choline deficiency in mice and demonstrate a clear dose concordance between DEA-induced choline deficiency and hepatocarcinogenic outcome.


Subject(s)
Carcinogens/toxicity , Choline Deficiency/chemically induced , Ethanolamines/toxicity , Liver/drug effects , Administration, Cutaneous , Animals , Betaine/metabolism , Carcinogens/administration & dosage , Choline Deficiency/metabolism , Choline Deficiency/pathology , Dose-Response Relationship, Drug , Drug Synergism , Ethanol/toxicity , Ethanolamines/administration & dosage , Glycerylphosphorylcholine/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , No-Observed-Adverse-Effect Level , Phosphatidylcholines/metabolism , Phosphorylcholine/metabolism , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...