Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Radiology ; 312(3): e240271, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39254452

ABSTRACT

Background Data on the diagnostic accuracy of ultralow-dose (ULD) CT protocols for periodic surveillance in recipients of lung transplant are lacking. Purpose To assess the potential for radiation dose reduction using ULD photon-counting CT (PCT) to detect lung abnormalities in recipients of lung transplant during repeat CT follow-up. Materials and Methods Consecutive adult recipients of lung transplant undergoing same-day standard-of-care low-dose (LD) and ULD PCT from March 2023 to May 2023 were prospectively included. The ULD protocols were performed with two target effective doses comprising 20% (hereafter, ULD1) and 10% (hereafter, ULD2) of the standard LD protocol. The 1-mm reconstructions were reviewed by three readers. Subjective image quality, the visibility of certain anatomic structures (using a five-point Likert scale), and the presence of lung abnormalities were independently assessed. The χ2 or t tests were used to evaluate differences between the ULD1 and ULD2 protocols. Results A total of 82 participants (median age, 64 years [IQR, 54-69 years]; 47 male) were included (41 participants for each ULD protocol). The mean effective doses per protocol were 1.41 mSv ± 0.44 (SD) for LD, 0.26 mSv ± 0.08 for ULD1, and 0.17 mSv ± 0.04 for ULD2. According to three readers, the subjective image quality of the ULD images was deemed diagnostic (Likert score ≥3) in 39-40 (ULD1) and 40-41 (ULD2) participants, and anatomic structures could be adequately visualized (Likert score ≥3) in 33-41 (ULD1) and 34-41 (ULD2) participants. The detection accuracy for individual lung anomalies exceeded 70% for both ULD protocols, except for readers 1 and 3 detecting proximal bronchiectasis and reader 3 detecting bronchial wall thickening and air trapping. No evidence of a statistically significant difference in noise (P = .96), signal-to-noise ratio (P = .77), or reader accuracy (all P ≥ .05) was noted between the ULD protocols. Conclusion ULD PCT was feasible for detecting lung abnormalities following lung transplant, with a tenfold radiation dose reduction. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ciet in this issue.


Subject(s)
Lung Transplantation , Lung , Radiation Dosage , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Prospective Studies , Lung/diagnostic imaging , Photons , Lung Diseases/diagnostic imaging
2.
Cancers (Basel) ; 15(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36765822

ABSTRACT

The risk of keratinocyte cancer is determined by intrinsic and extrinsic factors, which also influence skin aging. Few studies have linked skin aging and UV exposure with the incidence of non-melanoma skin cancer (NMSC). We evaluated signs of actinic skin damage and aging, individual UV burden, and melanocortin-1 receptor (MC1R) variants. A total of 194 organ transplant recipients (OTR) who suffered from NMSC were compared to 194 tumor-free controls matched for gender, age, type of transplanted organ, post-transplantation (TX) period, and immunosuppressive therapy. Compared with the cases, the controls scored higher in all skin aging scores and there were no differences in UV burden except for intentional whole-body UV exposure for specific UV scenarios and periods of life in favor of cases. The number of NMSCs correlated with all types of skin aging scores, the extent of intentional sun exposure, older age, longer post-TX period, shorter interval from TX to first NMSC, and specific MC1R risk groups. Multivariable models revealed a 7.5-fold risk of developing NMSC in individuals with actinic keratosis; 4.1- or 3.6-fold in those with green or blue eyes, respectively; and a 1.9-fold increased risk in the MC1R medium- + high-risk group. In the absence of skin aging contributing to NMSC development, certain MC1R risk types may identify OTR at risk for high tumor burden.

SELECTION OF CITATIONS
SEARCH DETAIL