Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
IEEE Trans Comput Imaging ; 9: 459-474, 2023.
Article in English | MEDLINE | ID: mdl-37456517

ABSTRACT

Steady progress in time-domain diffuse optical tomography (TD-DOT) technology is allowing for the first time the design of low-cost, compact, and high-performance systems, thus promising more widespread clinical TD-DOT use, such as for recording brain tissue hemodynamics. TD-DOT is known to provide more accurate values of optical properties and physiological parameters compared to its frequency-domain or steady-state counterparts. However, achieving high temporal resolution is still difficult, as solving the inverse problem is computationally demanding, leading to relatively long reconstruction times. The runtime is further compromised by processes that involve 'nontrivial' empirical tuning of reconstruction parameters, which increases complexity and inefficiency. To address these challenges, we present a new reconstruction algorithm that combines a deep-learning approach with our previously introduced sensitivity-equation-based, non-iterative sparse optical reconstruction (SENSOR) code. The new algorithm (called SENSOR-NET) unfolds the iterations of SENSOR into a deep neural network. In this way, we achieve high-resolution sparse reconstruction using only learned parameters, thus eliminating the need to tune parameters prior to reconstruction empirically. Furthermore, once trained, the reconstruction time is not dependent on the number of sources or wavelengths used. We validate our method with numerical and experimental data and show that accurate reconstructions with 1 mm spatial resolution can be obtained in under 20 milliseconds regardless of the number of sources used in the setup. This opens the door for real-time brain monitoring and other high-speed DOT applications.

2.
J Biomed Opt ; 27(12): 125002, 2022 12.
Article in English | MEDLINE | ID: mdl-36582192

ABSTRACT

Significance: Due to the persistence of chronic wounds, a second surgical intervention is often necessary for patients with peripheral arterial disease (PAD) within a year of the first intervention. The dynamic vascular optical spectroscopy system (DVOS) may assist physicians in determining patient prognosis only a month after the first surgical intervention. Aim: We aim to assess the DVOS utility in characterizing wound healing in PAD patients after endovascular intervention. Approach: The DVOS used near-infrared light ( 670 < λ < 850 nm ) to record hemodynamic response to a cuff inflation in 14 PAD patients with lower limb ulcers immediately before, immediately after, and at a first follow-up 3 to 4 weeks after intervention. Ankle-brachial index (ABI) and arterial duplex ultrasound (A-DUS) measurements were obtained when possible. Results: The total hemoglobin plateau time differed significantly between patients with ulcers that reduced in size ( N = 9 ) and patients with ulcers that did not ( N = 5 ) 3 to 4 weeks after intervention ( p value < 0.001 ). Data correlated strongly (89% sensitivity, 100% specificity, and AUC = 0.96 ) with long-term wound healing. ABI and A-DUS measurements were not statistically associated with wound healing. Conclusions: This pilot study demonstrates the potential of the DVOS to aid physicians in giving accurate long-term wound healing prognoses 1 month after intervention.


Subject(s)
Peripheral Arterial Disease , Ulcer , Humans , Ulcer/complications , Pilot Projects , Ischemia , Treatment Outcome , Wound Healing , Peripheral Arterial Disease/diagnostic imaging , Spectrum Analysis , Retrospective Studies
3.
Article in English | MEDLINE | ID: mdl-34966190

ABSTRACT

We introduce a novel image reconstruction method for time-resolved diffuse optical tomography (DOT) that yields submillimeter resolution in less than a second. This opens the door to high-resolution real-time DOT in imaging of the brain activity. We call this approach the sensitivity equation based noniterative sparse optical reconstruction (SENSOR) method. The high spatial resolution is achieved by implementing an asymptotic l 0-norm operator that guarantees to obtain sparsest representation of reconstructed targets. The high computational speed is achieved by employing the nontruncated sensitivity equation based noniterative inverse formulation combined with reduced sensing matrix and parallel computing. We tested the new method with numerical and experimental data. The results demonstrate that the SENSOR algorithm can achieve 1 mm3 spatial-resolution optical tomographic imaging at depth of ∼60 mean free paths (MFPs) in 20∼30 milliseconds on an Intel Core i9 processor.

4.
Breast Cancer Res Treat ; 189(1): 297-304, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34213660

ABSTRACT

PURPOSE: Diffuse optical tomography breast imaging system (DOTBIS) non-invasively measures tissue concentration of hemoglobin, which is a potential biomarker of short-term response to neoadjuvant chemotherapy. We evaluated whether DOTBIS-derived measurements are modifiable with targeted therapies, including AKT inhibition and endocrine therapy. METHODS: We conducted a proof of principle study in seven postmenopausal women with stage I-III breast cancer who were enrolled in pre-surgical studies of the AKT inhibitor MK-2206 (n = 4) or the aromatase inhibitors exemestane (n = 2) and letrozole (n = 1). We performed DOTBIS at baseline (before initiation of therapy) and post-therapy in the affected breast (tumor volume) and contralateral, unaffected breast, and measured tissue concentrations (in µM) of total hemoglobin (ctTHb), oxyhemoglobin (ctO2Hb), and deoxyhemoglobin (ctHHb), as well as water fraction (%). RESULTS: We found consistent decreases in DOTBIS-measured hemoglobin concentrations in tumor volume, with median percent changes for ctTHb, ctHHb, ctO2Hb, and water fraction for the entire cohort of - 27.1% (interquartile range [IQR] 37.5%), - 49.8% (IQR 29.3%), - 33.5% (IQR 47.4%), and - 3.6% (IQR 10.6%), respectively. In the contralateral breast, median percent changes for ctTHb, ctHHb, ctO2Hb, and water fraction were + 1.8% (IQR 26.7%), - 8.6% (IQR 29.3%), + 6.2% (IQR 29.5%), and + 1.9% (IQR 30.7%), respectively. CONCLUSION: We demonstrated that DOTBIS-derived measurements are modifiable with pre-surgical AKT inhibition and endocrine therapy, supporting further investigation of DOTBIS as a potential imaging assessment of response to neoadjuvant targeted therapies in early stage breast cancer.


Subject(s)
Breast Neoplasms , Tomography, Optical , Aromatase Inhibitors , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Humans , Letrozole , Neoadjuvant Therapy
5.
Biomed Opt Express ; 12(3): 1651-1665, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796379

ABSTRACT

We have developed a flexible optical imaging system (FOIS) to assess systemic lupus erythematosus (SLE) arthritis in the finger joints. While any part of the body can be affected, arthritis in the finger joints is one of the most common SLE manifestations. There is an unmet need for accurate, low-cost assessment of lupus arthritis that can be easily performed at every clinic visit. Current imaging methods are imprecise, expensive, and time consuming to allow for frequent monitoring. Our FOIS can be wrapped around joints, and multiple light sources and detectors gather reflected and transmitted light intensities. Using data from two SLE patients and two healthy volunteers, we demonstrate the potential of this FOIS for assessment of arthritis in SLE patients.

6.
IEEE Trans Pattern Anal Mach Intell ; 43(7): 2206-2219, 2021 07.
Article in English | MEDLINE | ID: mdl-33891548

ABSTRACT

Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional  âˆ¼ 10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime ( mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.


Subject(s)
Algorithms , Tomography, Optical
7.
Breast Cancer Res ; 23(1): 16, 2021 01 31.
Article in English | MEDLINE | ID: mdl-33517909

ABSTRACT

BACKGROUND: The purpose of this study is to evaluate whether the changes in optically derived parameters acquired with a diffuse optical tomography breast imager system (DOTBIS) in the contralateral non-tumor-bearing breast in patients administered neoadjuvant chemotherapy (NAC) for breast cancer are associated with pathologic complete response (pCR). METHODS: In this retrospective evaluation of 105 patients with stage II-III breast cancer, oxy-hemoglobin (ctO2Hb) from the contralateral non-tumor-bearing breast was collected and analyzed at different time points during NAC. The earliest monitoring imaging time point was after 2-3 weeks receiving taxane. Longitudinal data were analyzed using linear mixed-effects modeling to evaluate the contralateral breast ctO2Hb changes across chemotherapy when corrected for pCR status, age, and BMI. RESULTS: Patients who achieved pCR to NAC had an overall decrease of 3.88 µM for ctO2Hb (95% CI, 1.39 to 6.37 µM), p = .004, after 2-3 weeks. On the other hand, non-pCR subjects had a non-significant mean reduction of 0.14 µM (95% CI, - 1.30 to 1.58 µM), p > .05. Mixed-effect model results indicated a statistically significant negative relationship of ctO2Hb levels with BMI and age. CONCLUSIONS: This study demonstrates that the contralateral normal breast tissue assessed by DOTBIS is modifiable after NAC, with changes associated with pCR after only 2-3 weeks of chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Tomography, Optical , Algorithms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Breast Neoplasms/metabolism , Disease Management , Female , Humans , Image Processing, Computer-Assisted , Neoadjuvant Therapy , Tomography, Optical/methods , Tomography, Optical/standards , Treatment Outcome , Tumor Burden
8.
Clin Cancer Res ; 27(7): 1949-1957, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33451976

ABSTRACT

PURPOSE: This study's primary objective was to evaluate the changes in optically derived parameters acquired with a diffuse optical tomography breast imaging system (DOTBIS) in the tumor volume of patients with breast carcinoma receiving neoadjuvant chemotherapy (NAC). EXPERIMENTAL DESIGN: In this analysis of 105 patients with stage II-III breast cancer, normalized mean values of total hemoglobin ([Formula: see text]), oxyhemoglobin ([Formula: see text]), deoxy-hemoglobin concentration ([Formula: see text]), water, and oxygen saturation ([Formula: see text]) percentages were collected at different timepoints during NAC and compared with baseline measurements. This report compared changes in these optical biomarkers measured in patients who did not achieve a pathologic complete response (non-pCR) and those with a pCR. Differences regarding molecular subtypes were included for hormone receptor-positive and HER2-negative, HER2-positive, and triple-negative breast cancer. RESULTS: At baseline, [Formula: see text] was higher for pCR tumors (3.97 ± 2.29) compared with non-pCR tumors (3.00 ± 1.72; P = 0.031). At the earliest imaging point after starting therapy, the mean change of [Formula: see text] compared with baseline ([Formula: see text]) was statistically significantly higher in non-pCR (1.23 ± 0.67) than in those with a pCR (0.87 ± 0.61; P < 0.0005), and significantly correlated to residual cancer burden classification (r = 0.448; P < 0.0005). [Formula: see text] combined with HER2 status was proposed as a two-predictor logistic model, with AUC = 0.891; P < 0.0005; and 95% confidence interval, 0.812-0.969. CONCLUSIONS: This study demonstrates that DOTBIS measured features change over time according to tumor pCR status and may predict early in the NAC treatment course whether a patient is responding to NAC.


Subject(s)
Breast Neoplasms/diagnostic imaging , Tomography, Optical/methods , Adult , Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Receptor, ErbB-2/analysis
9.
Biomed Opt Express ; 10(8): 4305-4315, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31453012

ABSTRACT

The purpose of this study is to evaluate whether a diffuse optical tomography breast imaging system (DOTBIS) can provide a comparable optical-based image index of mammographic breast density, an established biomarker of breast cancer risk. Oxyhemoglobin concentration (ctO2Hb) measured by DOTBIS was collected from 40 patients with stage II-III breast cancer. The tumor-free contralateral breast was used for this evaluation. We observed a moderate positive correlation between the patient's mammogram density classification and ctO2Hb, rs = 0.486 (p = 0.001). In addition, significant reduction in ctO2Hb levels were noted during neoadjuvant chemotherapy treatment (p = 0.017). This observation indicates that ctO2Hb levels measured by DOTBIS could be a novel modifiable imaging biomarker of breast cancer risk and warrants further investigation.

10.
J Biomed Opt ; 23(12): 1-3, 2018 12.
Article in English | MEDLINE | ID: mdl-30574694

ABSTRACT

This guest editorial introduces the special section honoring Prof. Steven L. Jacques.


Subject(s)
Biomedical Engineering , Optical Imaging , Optics and Photonics , Humans
11.
Radiology ; 287(3): 778-786, 2018 06.
Article in English | MEDLINE | ID: mdl-29431574

ABSTRACT

Purpose To identify dynamic optical imaging features that associate with the degree of pathologic response in patients with breast cancer during neoadjuvant chemotherapy (NAC). Materials and Methods Of 40 patients with breast cancer who participated in a longitudinal study between June 2011 and March 2016, 34 completed the study. There were 13 patients who obtained a pathologic complete response (pCR) and 21 patients who did not obtain a pCR. Imaging data from six subjects were excluded from the study because either the patients dropped out of the study before it was finished or there was an instrumentation malfunction. Two weeks into the treatment regimen, three-dimensional images of both breasts during a breath hold were acquired by using dynamic diffuse optical tomography. Features from the breath-hold traces were used to distinguish between response groups. Receiver operating characteristic (ROC) curves and sensitivity analysis were used to determine the degree of association with 5-month treatment outcome. Results An ROC curve analysis showed that this method could identify patients with a pCR with a positive predictive value of 70.6% (12 of 17), a negative predictive value of 94.1% (16 of 17), a sensitivity of 92.3% (12 of 13), a specificity of 76.2% (16 of 21), and an area under the ROC curve of 0.85. Conclusion Several dynamic optical imaging features obtained within 2 weeks of NAC initiation were identified that showed statistically significant differences between patients with pCR and patients without pCR as determined 5 months after treatment initiation. If confirmed in a larger cohort prospective study, these dynamic imaging features may be used to predict treatment outcome as early as 2 weeks after treatment initiation. © RSNA, 2018 Online supplemental material is available for this article.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Neoadjuvant Therapy/methods , Tomography, Optical/methods , Adult , Breast/diagnostic imaging , Chemotherapy, Adjuvant , Female , Humans , Longitudinal Studies , Middle Aged , Sensitivity and Specificity , Treatment Outcome
12.
Int J Therm Sci ; 116: 265-277, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29062243

ABSTRACT

We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n-th order absorption coefficients (FD-SPN) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SPN based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SPN model with 3rd order absorption coefficient (i.e., FD-SP3) is used as a forward model to solve the inverse problem. The FD-SP3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP3 model approximates the FD-ERT (S12) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP3 model than those with the SP1 model. Therefore, this work shows that the FD-SP3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S12) and also it is more accurate than the FD-SP1.

13.
Pediatr Dermatol ; 34(4): 386-391, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28548465

ABSTRACT

BACKGROUND/OBJECTIVES: Infantile hemangiomas (IHs) are vascular tumors with the potential for significant morbidity. There is a lack of validated objective tools to assess IH severity and response to treatment. Diffuse optical spectroscopy (DOS), a noninvasive, nonionizing imaging modality, can measure total hemoglobin concentration and hemoglobin oxygen saturation in tissue to assess IH vascularity and response to treatment. Our objective was to evaluate the utility of a wireless, handheld DOS system to assess IH characteristics at selected points during their clinical course. METHODS: Thirteen subjects (initial age 5.8 ± 2.0 mos) with 15 IHs were enrolled. IHs were classified as proliferative, plateau phase, or involuting. Nine patients with 11 IHs were untreated; four patients with 4 IHs were treated with timolol or propranolol. Each IH was evaluated by placing the DOS system directly on the lesion as well a normal contralateral skin site. IH vascularity and oxygenation were scored using a newly defined normalized hypoxia fraction (NHF) coefficient. Measurements were recorded at various intervals from the initial visit to 1 to 2 years of age. RESULTS: For the nine untreated IHs, the NHF was highest at 6 months of age, during proliferation. Differences in NHFs between the proliferation and the plateau (p = 0.02) and involuting (p < 0.001) stages were statistically significant. In treated patients, the NHF normalized to 60% after 2 months. One treated IH came within 5% of the NHF for normal skin after 12 months. CONCLUSIONS: DOS can be used to assess the vascularity and tissue oxygenation of IHs and monitor their progression and response to treatment.


Subject(s)
Hemangioma/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Adrenergic beta-Antagonists/therapeutic use , Child , Child, Preschool , Female , Hemangioma/drug therapy , Humans , Infant , Longitudinal Studies , Pilot Projects , Wireless Technology
14.
J Quant Spectrosc Radiat Transf ; 167: 10-22, 2015 12 01.
Article in English | MEDLINE | ID: mdl-26345531

ABSTRACT

It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5~3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

15.
Biomed Opt Express ; 5(7): 2301-16, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25071965

ABSTRACT

We present a novel non-contact small animal fluorescent molecular tomography (FMT) imaging system. At the heart of the system is a new mirror-based imaging head that was designed to provide 360-degree measurement data from an entire animal surface in one step. This imaging head consists of two conical mirrors, which considerably reduce multiple back reflections between the animal and mirror surfaces. These back reflections are common in existing mirror-based imaging heads and tend to degrade the quality of raw measurement data. In addition, the introduction of a novel ray-transfer operator allows for the inclusion of the angular dependent data in the image reconstruction process, which results in higher image resolution. We describe in detail the system design and implementation of the hardware components as well as the transport-theory-based image reconstruction algorithm. Using numerical simulations, measurements on a well-defined phantom and a live animal, we evaluate the system performance and show the advantages of our approach.

16.
J Biomed Opt ; 18(9): 096012, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24048367

ABSTRACT

Diffuse optical tomography (DOT) is a noninvasive, nonionizing imaging modality that uses near-infrared light to visualize optically relevant chromophores. A recently developed dynamic DOT imaging system enables the study of hemodynamic effects in the breast during a breath-hold. Dynamic DOT imaging was performed in a total of 21 subjects (age 54±10 years) including 3 healthy subjects and 18 subjects with benign (n=8) and malignant (n=14) masses. Three-dimensional time-series images of the percentage change in oxygenated and deoxygenated hemoglobin concentrations ([HbO2] and [Hb]) from baseline are obtained over the course of a breath-hold. At a time point of 15 s following the end of the breath-hold, [Hb] in healthy breasts has returned to near-baseline values (1.6%±0.5%), while tumor-bearing breasts have increased levels of [Hb] (6.8%±3.6%, p<0.01). Further, healthy subjects have a higher correlation between the breasts over the course of the breath-hold as compared with the subjects with breast cancer (healthy: 0.96±0.02; benign: 0.89±0.02; malignant: 0.78±0.23, p<0.05). Therefore this study shows that dynamic features extracted from DOT measurements can differentiate healthy and diseased breast tissues. These features provide a physiologic method for identifying breast cancer without the need for ionizing radiation.


Subject(s)
Biomarkers, Tumor/chemistry , Breast Neoplasms/chemistry , Imaging, Three-Dimensional/methods , Tomography, Optical/methods , Adult , Biomarkers, Tumor/blood , Breast Neoplasms/blood supply , Breast Neoplasms/physiopathology , Breath Holding , Female , Hemodynamics/physiology , Hemoglobins/analysis , Humans , Middle Aged , Oxyhemoglobins/analysis
17.
J Biomed Opt ; 18(7): 076001, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23856915

ABSTRACT

This is the first part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT). An approach for extracting heuristic features from DOT images and a method for using these features to diagnose rheumatoid arthritis (RA) are presented. Feature extraction is the focus of Part 1, while the utility of five classification algorithms is evaluated in Part 2. The framework is validated on a set of 219 DOT images of proximal interphalangeal (PIP) joints. Overall, 594 features are extracted from the absorption and scattering images of each joint. Three major findings are deduced. First, DOT images of subjects with RA are statistically different (p<0.05) from images of subjects without RA for over 90% of the features investigated. Second, DOT images of subjects with RA that do not have detectable effusion, erosion, or synovitis (as determined by MRI and ultrasound) are statistically indistinguishable from DOT images of subjects with RA that do exhibit effusion, erosion, or synovitis. Thus, this subset of subjects may be diagnosed with RA from DOT images while they would go undetected by reviews of MRI or ultrasound images. Third, scattering coefficient images yield better one-dimensional classifiers. A total of three features yield a Youden index greater than 0.8. These findings suggest that DOT may be capable of distinguishing between PIP joints that are healthy and those affected by RA with or without effusion, erosion, or synovitis.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Image Interpretation, Computer-Assisted/methods , Tomography, Optical/methods , Algorithms , Analysis of Variance , Arthritis, Rheumatoid/physiopathology , Finger Joint/physiology , Finger Joint/physiopathology , Humans , Imaging, Three-Dimensional , ROC Curve
18.
J Biomed Opt ; 18(7): 076002, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23856916

ABSTRACT

This is the second part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT) for diagnosing rheumatoid arthritis (RA). A comprehensive analysis of techniques for the classification of DOT images of proximal interphalangeal joints of subjects with and without RA is presented. A method for extracting heuristic features from DOT images was presented in Part 1. The ability of five classification algorithms to accurately label each DOT image as belonging to a subject with or without RA is analyzed here. The algorithms of interest are the k-nearest-neighbors, linear and quadratic discriminant analysis, self-organizing maps, and support vector machines (SVM). With a polynomial SVM classifier, we achieve 100.0% sensitivity and 97.8% specificity. Lower bounds for these results (at 95.0% confidence level) are 96.4% and 93.8%, respectively. Image features most predictive of RA are from the spatial variation of optical properties and the absolute range in feature values. The optimal classifiers are low-dimensional combinations (<7 features). These results underscore the high potential for DOT to become a clinically useful diagnostic tool and warrant larger prospective clinical trials to conclusively demonstrate the ultimate clinical utility of this approach.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Image Interpretation, Computer-Assisted/methods , Support Vector Machine , Tomography, Optical/methods , Discriminant Analysis , Humans
19.
Biomed Opt Express ; 3(9): 2288-98, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23024920

ABSTRACT

Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool.

20.
Ultrasound Med Biol ; 38(6): 1019-29, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22425376

ABSTRACT

Agents targeting vascular endothelial growth factor (VEGF) have been validated as cancer therapeutics, yet efficacy can differ widely between tumor types and individual patients. In addition, such agents are costly and can have significant toxicities. Rapid noninvasive determination of response could provide significant benefits. We tested if response to the anti-VEGF antibody bevacizumab (BV) could be detected using contrast-enhanced ultrasound imaging (CEUS). We used two xenograft model systems with previously well-characterized responses to VEGF inhibition, a responder (SK-NEP-1) and a non-responder (NGP), and examined perfusion-related parameters. CEUS demonstrated that BV treatment arrested the increase in blood volume in the SK-NEP-1 tumor group only. Molecular imaging of α(V)ß(3) with targeted microbubbles was a more sensitive prognostic indicator of BV efficacy. CEUS using RGD-labeled microbubbles showed a robust decrease in α(V)ß(3) vasculature following BV treatment in SK-NEP-1 tumors. Paralleling these findings, lectin perfusion assays detected a disproportionate pruning of smaller, branch vessels. Therefore, we conclude that the response to BV can be identified soon after initiation of treatment, often within 3 days, by use of CEUS molecular imaging techniques. The use of a noninvasive ultrasound approach may allow for earlier and more effective determination of efficacy of antiangiogenic therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , Neuroblastoma/diagnostic imaging , Neuroblastoma/drug therapy , Sarcoma, Ewing/diagnostic imaging , Sarcoma, Ewing/drug therapy , Animals , Bevacizumab , Blood Volume , Contrast Media , Disease Progression , Mice , Mice, Nude , Microbubbles , Prognosis , Regression Analysis , Ultrasonography , Vascular Endothelial Growth Factor A/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...