Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Nat Commun ; 15(1): 5369, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987235

ABSTRACT

Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.


Subject(s)
Neurons , Temporal Lobe , Animals , Male , Temporal Lobe/physiology , Neurons/physiology , Macaca mulatta , Memory/physiology , Magnetic Resonance Imaging , Frontal Lobe/physiology , Memory, Short-Term/physiology , Brain Mapping , Prefrontal Cortex/physiology
2.
Rinsho Shinkeigaku ; 2024 Jul 27.
Article in Japanese | MEDLINE | ID: mdl-39069492

ABSTRACT

The patient was an 85-year-old man with a one-year history of difficulty reading kana. Neuropsychological evaluation revealed kana (phonogram)-selective reading impairment and kanji (ideogram)-dominant writing impairment. MRI revealed significant cerebral atrophy in the left occipital cortex, leading to the clinical diagnosis of posterior cortical atrophy (PCA). Cerebrospinal fluid amyloid ß1-42 levels were reduced, and amyloid PET showed accumulation in the posterior cingulate cortex, precuneus, and frontal lobe. In contrast, tau PET showed no accumulation in the atrophied brain areas. Episodes of REM sleep behavior disorder and decreased uptake on meta-iodobenzylguanidine (MIBG) myocardial scintigraphy suggested the involvement of Lewy body pathology. PCA with distinct laterality has been rarely reported, and |this is the first case to present Kana-selective reading impairment and Kanji-dominant writing impairment with neurodegenerative background.

3.
Biomedicines ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39062033

ABSTRACT

Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.

4.
Alzheimers Dement ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041435

ABSTRACT

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

5.
PCN Rep ; 3(1): e178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38868471

ABSTRACT

Aim: Progressive supranuclear palsy (PSP) is a rapidly progressive neurodegenerative disorder characterized by Parkinsonism, supranuclear ophthalmoplegia, postural instability, and cognitive impairment. Patients: This case series describes three patients initially diagnosed with late-life mood disorders (depression and bipolar disorder) who were later diagnosed with PSP because of the development of typical neurological symptoms. Result: The diagnostic challenge of PSP is highlighted in this case report, particularly in the early stages, when characteristic symptoms may not be present. The importance of considering PSP in the differential diagnosis of late-life mood disorders, especially in the absence of response to standard antidepressant therapy, is also emphasized. The heterogeneity of PSP is described, with various subtypes and atypical variants presenting with different clinical features. The psychiatric symptoms of PSP include apathy, disinhibition, depression, and anxiety, whereas hallucinations and delusions are less frequent. Tau positron emission tomography imaging is discussed as a potential biomarker for atypical PSP. Conclusion: Early diagnosis and intervention are crucial for improved outcomes in PSP, necessitating further research to enhance the diagnostic and treatment strategies for PSP and other neurodegenerative diseases.

6.
Neuron ; 112(15): 2540-2557.e8, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38843838

ABSTRACT

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.


Subject(s)
Disease Models, Animal , Lewy Body Disease , Parkinson Disease , Positron-Emission Tomography , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/diagnostic imaging , Humans , Mice , Positron-Emission Tomography/methods , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Lewy Body Disease/diagnostic imaging , Callithrix , Male , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Female , Aged , Mice, Inbred C57BL
7.
Neuropathology ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715398

ABSTRACT

A 68-year-old woman presented with difficulty finding words and writing characters. Neurological examination led to clinical diagnosis at onset of the logopenic variant of primary progressive aphasia accompanied with ideomotor apraxia, visuospatial agnosia on the right, and Gerstmann syndrome. Bradykinesia and rigidity on the right with shuffling gait developed after one year. Treatment with L-dopa had no effect. The patient was diagnosed with corticobasal syndrome (CBS). Brain magnetic resonance imaging revealed diffuse cortical atrophy dominantly on the left, especially in the temporal, parietal, and occipital lobes. Positron emission tomography did not reveal any significant accumulation of amyloid ß or tau protein. She died five years later. Neuropathological examination revealed diffuse cortical atrophy with severe neuronal loss and fibrous gliosis in the cortex. Neuronal cytoplasmic inclusions, short dystrophic neurites, and, most notably, neuronal intranuclear inclusions, all immunoreactive for phosphorylated TDP-43, were observed. Western blotting revealed a full length and fragments of phosphorylated TDP-43 at 45 and 23 kDa, respectively, confirming the pathological diagnosis of type A FTLD-TDP. Whole exome sequencing revealed a pathogenic mutation in GRN (c.87dupC). FTLD-TDP should be included in the differential diagnosis of CBS.

8.
Ann Neurol ; 96(2): 247-261, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38771066

ABSTRACT

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.


Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein , Gyrus Cinguli , Inositol , Lactic Acid , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Astrocytes/metabolism , Astrocytes/pathology , Male , Female , Aged , Middle Aged , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/blood , Lactic Acid/blood , Lactic Acid/metabolism , Inositol/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/pathology , Biomarkers/blood , tau Proteins/metabolism , Positron-Emission Tomography
9.
Mov Disord Clin Pract ; 11(6): 720-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605589

ABSTRACT

BACKGROUND: MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES: To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS: Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS: We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS: This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.


Subject(s)
Frontotemporal Dementia , Mutation , tau Proteins , Humans , tau Proteins/genetics , tau Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/diagnosis , Male , Female , Middle Aged , Pedigree , Aged , Brain/pathology , Brain/metabolism , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , Chromosomes, Human, Pair 17/genetics , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism
10.
Sci Rep ; 14(1): 7129, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531908

ABSTRACT

Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Humans , Mammillary Bodies , Brain , Memory Disorders/etiology , Athletes/psychology , Brain Injuries, Traumatic/complications
11.
Brain Commun ; 6(2): fcae075, 2024.
Article in English | MEDLINE | ID: mdl-38510212

ABSTRACT

Frontotemporal dementia refers to a group of neurodegenerative disorders with diverse clinical and neuropathological features. In vivo neuropathological assessments of frontotemporal dementia at an individual level have hitherto not been successful. In this study, we aim to classify patients with frontotemporal dementia based on topologies of tau protein aggregates captured by PET with 18F-florzolotau (aka 18F-APN-1607 and 18F-PM-PBB3), which allows high-contrast imaging of diverse tau fibrils in Alzheimer's disease as well as in non-Alzheimer's disease tauopathies. Twenty-six patients with frontotemporal dementia, 15 with behavioural variant frontotemporal dementia and 11 with other frontotemporal dementia phenotypes, and 20 age- and sex-matched healthy controls were included in this study. They underwent PET imaging of amyloid and tau depositions with 11C-PiB and 18F-florzolotau, respectively. By combining visual and quantitative analyses of PET images, the patients with behavioural variant frontotemporal dementia were classified into the following subgroups: (i) predominant tau accumulations in frontotemporal and frontolimbic cortices resembling three-repeat tauopathies (n = 3), (ii) predominant tau accumulations in posterior cortical and subcortical structures indicative of four-repeat tauopathies (n = 4); (iii) amyloid and tau accumulations consistent with Alzheimer's disease (n = 4); and (iv) no overt amyloid and tau pathologies (n = 4). Despite these distinctions, clinical symptoms and localizations of brain atrophy did not significantly differ among the identified behavioural variant frontotemporal dementia subgroups. The patients with other frontotemporal dementia phenotypes were also classified into similar subgroups. The results suggest that PET with 18F-florzolotau potentially allows the classification of each individual with frontotemporal dementia on a neuropathological basis, which might not be possible by symptomatic and volumetric assessments.

12.
Eur J Vasc Endovasc Surg ; 68(1): 120-128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38301869

ABSTRACT

OBJECTIVE: Ischaemia-reperfusion (I/R) injury is a severe post-operative complication that triggers an inflammatory response and causes severe damage. Hydrogen gas has anti-oxidant and anti-apoptotic properties and has been shown to be safe in humans. The study aimed to investigate whether hydrogen gas protects against skeletal muscle I/R injury. METHODS: Experimental basic research using mice. A total of 160 eight to 10 week old albino laboratory bred strain of house mice (25.8 ± 0.68 g) were used in this study. The mice were cable tied to the hindlimb under anaesthesia and then placed in an anaesthesia box filled with air and 2% isoflurane (control group); 80 mice were additionally subjected to 1.3% hydrogen gas in this mix (hydrogen group). After two hours, the cable ties were removed to initiate reperfusion, and hydrogen inhalation lasted for six hours in the hydrogen group. After six hours, the mice were taken out of the box and kept in cages under standard conditions until time for observation at 16 different time points after reperfusion: zero, two, four, six, eight, and 10 hours and one, two, three, four, five, six, seven, 14, 21, and 28 days. Five mice were sacrificed using excess anaesthesia at each time point, and the bilateral hindlimb tissues were harvested. The inflammatory effects of the I/R injury were assessed by evaluating serum interleukin-6 concentrations using enzyme linked immunosorbent assay, as well as histological and immunohistochemical analyses. Untreated mice with I/R injury were used as controls. RESULTS: Hydrogen gas showed protective effects associated with a reduction in inflammatory cell infiltration (neutrophils, macrophages, and lymphocytes), a reduced area of damaged muscle, maintenance of normal muscle cells, and replacement of damaged muscle cells with neoplastic myocytes. CONCLUSION: Inhalation of hydrogen gas had a protective effect against hindlimb I/R injury in mice, in part by reducing inflammatory cell infiltration and in part by preserving normal muscle cells.


Subject(s)
Disease Models, Animal , Hindlimb , Hydrogen , Muscle, Skeletal , Reperfusion Injury , Animals , Hydrogen/administration & dosage , Hydrogen/pharmacology , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Mice , Administration, Inhalation , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Time Factors , Male , Interleukin-6/blood , Interleukin-6/metabolism , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology
13.
Heliyon ; 10(2): e24672, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304795

ABSTRACT

The level of TAR DNA-binding protein 43 (TDP-43) in human blood was reported to have potential for use as a specific fluid biomarker, which represents disease-specific pathologies, for TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), which involves the aggregation and deposition of TDP-43 in the nervous system. However, at present, no reliable immunoassay can precisely quantify TDP-43 in human plasma and detect the difference in plasma TDP-43 levels between patients with ALS and controls. We recently developed a novel ultrasensitive immunoassay to quantify TDP-43 in human plasma, and in this study, we analytically validated this assay for application as a diagnostic biomarker for TDP-43 proteinopathies. The novel TDP-43 assay was assessed for the limit of detection, lower limit of quantification, intra- and interassay variation, linearity, parallelism, and analytical spike recoveries. Additionally, 17 pilot plasma samples obtained from patients with ALS and age-matched controls were analyzed using the assay. Our novel TDP-43 assay showed sufficient analytical performance to quantify TDP-43 in human plasma, with high sensitivity (LOD and LLOQ of 0.109 and 0.759 pg/mL, respectively) and high intra- and interassay precision (%CV) below 15 %. The experimental results for spike recovery, parallelism, and dilution linearity were also acceptable. In addition, despite a small sample size, significant differences in the plasma levels of TDP-43 were found between patients with ALS and controls (ALS, 66.63 ± 20.52 pg/mL; control, 42.70 ± 23.06 pg/mL, p = 0.0330). These results support that our novel TDP-43 assay is a reliable and innovative method for the quantification of TDP-43 in human plasma and can be a potential blood-based biomarker for the diagnosis of TDP-43 proteinopathies. Further large-scale studies are warranted to validate its usefulness.

14.
PLoS Biol ; 22(1): e3002445, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163325

ABSTRACT

Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.


Subject(s)
Serotonin Antagonists , Serotonin , Brain/metabolism , Carrier Proteins/metabolism , Receptor, Serotonin, 5-HT1B , Serotonin Antagonists/pharmacology , Macaca , Animals
15.
FEBS Open Bio ; 14(2): 165-180, 2024 02.
Article in English | MEDLINE | ID: mdl-37746832

ABSTRACT

Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.


Subject(s)
Neurodegenerative Diseases , Tauopathies , Mice , Animals , Humans , tau Proteins/metabolism , Cryoelectron Microscopy , Tauopathies/drug therapy , Tauopathies/metabolism , Tauopathies/pathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Brain/metabolism
16.
Neuroimage Clin ; 41: 103560, 2024.
Article in English | MEDLINE | ID: mdl-38147791

ABSTRACT

In Alzheimer's disease (AD), aggregated abnormal proteins induce neuronal dysfunction. Despite the evidence supporting the association between tau proteins and brain atrophy, further studies are needed to explore their link to neuronal dysfunction in the human brain. To clarify the relationship between neuronal dysfunction and abnormal proteins in AD-affected brains, we conducted magnetic resonance spectroscopic imaging (MRSI) and assessed the neurofilament light chain plasma levels (NfL). We evaluated tau and amyloid-ß depositions using standardized uptake value ratios (SUVRs) of florzolotau (18F) for tau and 11C-PiB for amyloid-ß positron emission tomography in the same patients. Heatmaps were generated to visualize Z scores of glutamate to creatine (Glu/Cr) and N-acetylaspartate to creatine (NAA/Cr) ratios using data from healthy controls. In AD brains, Z score maps revealed reduced Glu/Cr and NAA/Cr ratios in the gray matter, particularly in the right dorsolateral prefrontal cortex (rDLPFC) and posterior cingulate cortex (PCC). Glu/Cr ratios were negatively correlated with florzolotau (18F) SUVRs in the PCC, and plasma NfL levels were elevated and negatively correlated with Glu/Cr (P = 0.040, r = -0.50) and NAA/Cr ratios (P = 0.003, r = -0.68) in the rDLPFC. This suggests that the abnormal tau proteins in AD-affected brains play a role in diminishing glutamate levels. Furthermore, neuronal dysfunction markers including Glu/tCr and NAA/tCr could potentially indicate favorable clinical outcomes. Using MRSI provided spatial information about neural dysfunction in AD, enabling the identification of vulnerabilities in the rDLPFC and PCC within the AD's pathological context.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , tau Proteins/metabolism , Creatine/metabolism , Case-Control Studies , Magnetic Resonance Imaging , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography , Brain/pathology , Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy , Biomarkers/metabolism , Receptors, Antigen, T-Cell/metabolism
17.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38076986

ABSTRACT

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

18.
J Alzheimers Dis ; 96(3): 1253-1265, 2023.
Article in English | MEDLINE | ID: mdl-37980663

ABSTRACT

BACKGROUND: Deterioration of the oral environment is one of the risk factors for dementia. A previous study of an Alzheimer's disease (AD) model mouse suggests that tooth loss induces denervation of the mesencephalic trigeminal nucleus and neuroinflammation, possibly leading to accelerated tau dissemination from the nearby locus coeruleus (LC). OBJECTIVE: To elucidate the relevance of oral conditions and amyloid-ß (Aß) and tau pathologies in human participants. METHODS: We examined the number of remaining teeth and the biofilm-gingival interface index in 24 AD-spectrum patients and 19 age-matched healthy controls (HCs). They also underwent positron emission tomography (PET) imaging of Aß and tau with specific radiotracers, 11C-PiB and 18F-PM-PBB3, respectively. All AD-spectrum patients were Aß-positive, and all HCs were Aß-negative. We analyzed the correlation between the oral parameters and radiotracer retention. RESULTS: No differences were found in oral conditions between the AD and HC groups. 11C-PiB retentions did not correlate with the oral indices in either group. In AD-spectrum patients, brain-wide, voxel-based image analysis highlighted several regions, including the LC and associated brainstem substructures, as areas where 18F-PM-PBB3 retentions negatively correlated with the remaining teeth and revealed the correlation of tau deposits in the LC (r = -0.479, p = 0.018) primarily with the hippocampal and neighboring areas. The tau deposition in none of the brain regions was associated with the periodontal status. CONCLUSIONS: Our findings with previous preclinical evidence imply that tooth loss may enhance AD tau pathogenesis, promoting tau spreading from LC to the hippocampal formation.


Subject(s)
Alzheimer Disease , Tooth Loss , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Positron-Emission Tomography/methods , tau Proteins , Tooth Loss/complications , Tooth Loss/diagnostic imaging
19.
EJNMMI Radiopharm Chem ; 8(1): 31, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853253

ABSTRACT

BACKGROUND: Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS: (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/µmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS: We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.

20.
Ann Neurol ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37703428

ABSTRACT

OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.

SELECTION OF CITATIONS
SEARCH DETAIL