Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 715: 149995, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38685185

ABSTRACT

Immune checkpoint inhibitors have significantly transformed the landscape of cancer therapy. Nevertheless, while these inhibitors are highly effective for certain patient groups, many do not benefit due to primary or acquired resistance. Specifically, these treatments often lack sufficient therapeutic efficacy against cancers with low antigenicity. Thus, the development of an effective strategy to overcome cancers with low antigenicity is imperative for advancing next-generation cancer immunotherapy. Here, we show that small molecule inhibitor of hematopoietic progenitor kinase 1 (HPK1) combined with programmed cell death ligand 1 (PD-L1) blockade can enhance T-cell response to tumor with low antigenicity. We found that treatment of OT-1 splenocytes with HPK1 inhibitor enhanced the activation of signaling molecules downstream of T-cell receptor provoked by low-affinity-antigen stimulation. Using an in vivo OT-1 T-cell transfer model, we demonstrated that combining the HPK1 inhibitor with the anti-PD-L1 antibody significantly suppressed the growth of tumors expressing low-affinity altered peptide ligand of chicken ovalbumin, while anti-PD-L1 antibody monotherapy was ineffective. Our findings offer crucial insights into the potential for overcoming tumors with low antigenicity by combining conventional immune checkpoint inhibitors with HPK1 inhibitor.


Subject(s)
B7-H1 Antigen , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immunotherapy/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Humans , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , 3-Phosphoinositide-Dependent Protein Kinases
2.
Eur J Pharmacol ; 961: 176184, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37944847

ABSTRACT

Augmenting T-cell activity is a promising approach to enhance the efficacy of cancer immunotherapy treatment. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in immune cells and negatively regulates T-cell receptor signaling. It is reported that inhibition of the kinase function of HPK1 results in tumor growth suppression by enhancing cancer immunity. Thus, developing HPK1 inhibitors has attracted considerable attention as a future cancer immunotherapy approach. However, despite recent progress in HPK1 biology and pharmacology, various challenges still remain, such as developing HPK1 inhibitors with favorable pharmacological profiles and identifying tumor characteristics that can be applied to define susceptibility to HPK1 inhibition. Here, we present the identification and pharmacological evaluation of DS21150768, a potent small-molecule HPK1 inhibitor with a novel chemical scaffold. DS21150768 shows remarkable inhibition of HPK1 kinase activity, and in vitro studies demonstrated its potent activity to enhance T-cell function. DS21150768 is orally bioavailable and shows sustained plasma exposure, which leads to enhanced cytokine responses in vivo. We conducted a comparison of the anti-tumor efficacy of DS21150768 alone or in combination with anti-PD-1 antibody in 12 different mouse cancer cell models, and observed that the treatments suppressed tumor growth in multiple models. Furthermore, Gene Set Enrichment Analysis demonstrated significant enrichment of immune-related gene signatures in the tumor models responsive to DS21150768 treatment. Our results provide a path forward for the future development of HPK1 inhibitors and fundamental insights into biomarkers of HPK1-targeted therapy.


Subject(s)
Neoplasms , Mice , Animals , Neoplasms/drug therapy , T-Lymphocytes , Signal Transduction , Cytokines
3.
J Med Chem ; 66(1): 695-715, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36572866

ABSTRACT

Histone acetylation is a post-translational modification of histones that is catalyzed by histone acetyltransferases (HATs) and plays an essential role in cellular processes. The HAT domain of EP300/CBP has recently emerged as a potential drug target for cancer therapy. Here, we describe the identification of the novel, highly potent, and selective EP300/CBP HAT inhibitor DS-9300. Our optimization efforts using a structure-based drug design approach based on the cocrystal structures of the EP300 HAT domain in complex with compounds 2 and 3 led to the identification of compounds possessing low-nanomolar EP300 HAT inhibitory potency and the ability to inhibit cellular acetylation of histone H3K27. Optimization of the pharmacokinetic properties in this series resulted in compounds with excellent oral systemic exposure, and once-daily oral administration of 16 (DS-9300) demonstrated potent antitumor effects in a castrated VCaP xenograft mouse model without significant body weight loss.


Subject(s)
Histone Acetyltransferases , Histones , Humans , Mice , Animals , Histones/metabolism , Histone Acetyltransferases/metabolism , Acetylation , p300-CBP Transcription Factors , E1A-Associated p300 Protein
4.
Bioorg Med Chem Lett ; 66: 128726, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35413416

ABSTRACT

EP300 and its paralog CBP play an important role in post-translational modification as histone acetyltransferases (HATs). EP300/CBP inhibition has been gaining attention as an anticancer treatment target in recent years. Herein, we describe the identification of a novel, highly selective EP300/CBP inhibitor, compound 11 (DS17701585), by scaffold hopping and structure-based optimization of a high-throughput screening hit 1. Compound 11 (DS17701585) shows dose-dependent inhibition of SRY-box transcription factor 2 (SOX2) mRNA expression in a human lung squamous cell carcinoma cell line LK2-xenografted mouse model.


Subject(s)
Histone Acetyltransferases , Animals , Mice
5.
Bioorg Med Chem Lett ; 51: 128358, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34534674

ABSTRACT

Histone acetyltransferases (HATs) play a crucial role in post-translational modification. Among them, overexpression, mutation, or hyperfunction of EP300/CBP has been associated with various cancers. In this study, we identified the novel compound 2-chloro-5-[5-[(E)-[1-(3-chlorophenyl)-3-methyl-5-oxo-pyrazol-4-ylidene]methyl]-2-furyl]benzoic acid (1) as an EP300 HAT inhibitor via virtual screening. Further research has been focused on the design, synthesis, and in vitro biological evaluation of virtual hit derivatives. The studies revealed that 4-pyridone-3-carboxylic acid derivatives exhibited bioisosterism of benzoic acid. Replacement proved effective, providing compounds with similar EP300 HAT-inhibitory activity and improved cell growth-inhibitory activity compared to the benzoic acid analogs. Through these studies, we identified a potent and selective EP300/CBP HAT inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoic Acid/pharmacology , Drug Design , E1A-Associated p300 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Peptide Fragments/antagonists & inhibitors , Sialoglycoproteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoic Acid/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , E1A-Associated p300 Protein/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Peptide Fragments/metabolism , Sialoglycoproteins/metabolism , Structure-Activity Relationship
6.
Oral Oncol ; 69: 1-10, 2017 06.
Article in English | MEDLINE | ID: mdl-28559012

ABSTRACT

OBJECTIVE: The rising incidence of oral tongue squamous cell carcinoma (OTSCC) in patients who have never smoked and the paucity of knowledge of its biological behavior prompted us to develop a new cell line originating from a never-smoker. MATERIALS AND METHODS: Fresh tumor tissue of keratinizing OTSCC was collected from a 44-year-old woman who had never smoked. Serum-free media with a low calcium concentration were used in cell culture, and a multifaceted approach was taken to verify and characterize the cell line, designated UCSF-OT-1109. RESULTS: UCSF-OT-1109 was authenticated by STR DNA fingerprint analysis, presence of an epithelial marker EpCAM, absence of human papilloma virus (HPV) DNA, and SCC-specific microscopic appearance. Sphere-forming assays supported its tumorigenic potential. Spectral karyotype (SKY) analysis revealed numerical and structural chromosomal abnormalities. Whole-exome sequencing (WES) identified 46 non-synonymous and 13 synonymous somatic single-nucleotide polymorphisms (SNPs) and one frameshift deletion in the coding regions. Specifically, mutations of CDKN2A, TP53, SPTBN5, NOTCH2, and FAM136A were found in the databases. Copy number aberration (CNA) analysis revealed that the cell line loses chromosome 3p and 9p, but lacks amplification of 3q and 11q (as does HPV-negative, smoking-unrelated OTSCC). It also exhibits four distinctive focal amplifications in chromosome 19p, containing 131 genes without SNPs. Particularly, 52 genes showed >3- to 4-fold amplification and could be potential oncogenic drivers. CONCLUSION: We have successfully established a novel OTSCC cell line from a never-smoking patient. UCSF-OT-1109 is potentially a robust experimental model of OTSCC in never-smokers.


Subject(s)
Carcinoma, Squamous Cell/pathology , Tongue Neoplasms/pathology , Adult , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Culture Media, Serum-Free , Female , Humans , Mutation , Smoking , Spectral Karyotyping , Tongue Neoplasms/genetics
7.
Cancer Discov ; 6(4): 430-45, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26603525

ABSTRACT

UNLABELLED: Loss-of-function mutations in the CBP/CREBBP gene, which encodes a histone acetyltransferase (HAT), are present in a variety of human tumors, including lung, bladder, gastric, and hematopoietic cancers. Consequently, development of a molecular targeting method capable of specifically killing CBP-deficient cancer cells would greatly improve cancer therapy. Functional screening of synthetic-lethal genes in CBP-deficient cancers identified the CBP paralog p300/EP300 Ablation of p300 in CBP-knockout and CBP-deficient cancer cells induced G1-S cell-cycle arrest, followed by apoptosis. Genome-wide gene expression analysis revealed that MYC is a major factor responsible for the synthetic lethality. Indeed, p300 ablation in CBP-deficient cells caused downregulation of MYC expression via reduction of histone acetylation in its promoter, and this lethality was rescued by exogenous MYC expression. The p300-HAT inhibitor C646 specifically suppressed the growth of CBP-deficient lung and hematopoietic cancer cells in vitro and in vivo; thus p300 is a promising therapeutic target for treatment of CBP-deficient cancers. SIGNIFICANCE: Targeting synthetic-lethal partners of genes mutated in cancer holds great promise for treating patients without activating driver gene alterations. Here, we propose a "synthetic lethal-based therapeutic strategy" for CBP-deficient cancers by inhibition of the p300 HAT activity. Patients with CBP-deficient cancers could benefit from therapy using p300-HAT inhibitors.


Subject(s)
Apoptosis/genetics , CREB-Binding Protein/deficiency , E1A-Associated p300 Protein/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Synthetic Lethal Mutations , Animals , Cell Line, Tumor , Chromatin Assembly and Disassembly , Disease Models, Animal , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Heterografts , Histone Acetyltransferases/antagonists & inhibitors , Humans , Mice , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , RNA Interference , Transcription, Genetic
8.
J Infect Chemother ; 20(4): 256-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24709045

ABSTRACT

DS-8587 is a novel broad-spectrum fluoroquinolone with extended antimicrobial activity against both Gram-positive and Gram-negative pathogens. In this study, we evaluated the antibacterial activity and mechanism of DS-8587 in 31 quinolone-resistant Acinetobacter baumannii clinical isolates. Efflux pump and qnr genes, mutations in quinolone resistance-determining regions of target enzymes, and sequence types determined by multilocus sequence typing were analyzed. Forty-two quinolone-susceptible clinical isolates were analyzed for comparison. For susceptibility testing, DS-8587 exhibited more effective antibacterial activity when compared with ciprofloxacin and levofloxacin. When combined with the efflux pump inhibitor 1-(1-napthylmethyl)-piperazine, the MIC of DS-8587 was less affected when compared with the MIC exhibited by combined ciprofloxacin and 1-(1-napthylmethyl)-piperazine. The efflux pump genes adeA/adeB/adeC and regulatory elements adeR/adeS were detected in 23 of 31 quinolone-resistant isolates. The qnrA/qnrB/qnrS genes were not detected in any A. baumannii isolates analyzed. Mutations in quinolone resistance-determining regions were observed in all 31 quinolone-resistant isolates. Multilocus sequence typing analyses revealed that 22 of 31 quinolone-resistant isolates belonged to ST-2, corresponding to international clonal lineage II. In conclusion, DS-8587 exhibits potent antibacterial activity against quinolone-resistant A. baumannii isolates that harbor mutations in quinolone resistance-determining regions. In the presence of the efflux pump inhibitor 1-(1-napthylmethyl)-piperazine, no significant changes were observed in the MIC for DS-8587. DS-8587 should be considered as a treatment option for A. baumannii including ST-2 strains that are predominant among the quinolone-resistant A. baumannii isolates found in Japan.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Humans , Japan , Microbial Sensitivity Tests
9.
J Infect Chemother ; 20(5): 312-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24594453

ABSTRACT

DS-8587 is a novel broad-spectrum fluoroquinolone with extended antimicrobial activity against both Gram-positive and Gram-negative pathogens. In this study, we evaluated the in vitro and in vivo antibacterial activity of DS-8587 against multidrug-resistant (MDR) Acinetobacter baumannii. The MIC range of DS-8587 against MDR A. baumannii was 0.25-2 mg/L. These DS-8587 MICs were a minimum of 16-fold or 8-fold more potent than ciprofloxacin or levofloxacin, respectively. Bactericidal activity, a 3 log10 reduction from the initial bacterial counts, was observed within 2 h for 1593644 and 4 h for 1593684 after exposure to DS-8587. Therapeutic efficacy of DS-8587 in the murine calf muscle model was observed at 256 mg/kg. The analysis of the pharmacokinetic and pharmacodynamic index revealed that the AUC/MIC ratio showed the best correlation with efficacy. The total and free drug AUC/MIC value required for a static effect was 29.4 and 14.1, respectively. These data indicate DS-8587 would be an effective agent against MDR A. baumannii infection.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Animals , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Male , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests
10.
Antimicrob Agents Chemother ; 57(4): 1978-81, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23380726

ABSTRACT

We investigated the in vitro activity of DS-8587, a novel fluoroquinolone, against Acinetobacter baumannii. The MICs of DS-8587 against clinical isolates and its inhibitory activity against target enzymes were superior to those of ciprofloxacin and levofloxacin. Furthermore, the antibacterial activity of DS-8587 was less affected by adeA/adeB/adeC or abeM efflux pumps than was that of ciprofloxacin and the frequency of single-step mutations with DS-8587 was lower than that with ciprofloxacin. DS-8587 might be an effective agent against A. baumannii infection.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Quinolones/pharmacology , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ciprofloxacin/pharmacology , Microbial Sensitivity Tests , Mutation/genetics
11.
Antimicrob Agents Chemother ; 53(9): 3963-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19596881

ABSTRACT

Beta-1,6-glucan is a fungus-specific cell wall component that is essential for the retention of many cell wall proteins. We recently reported the discovery of a small molecule inhibitor of beta-1,6-glucan biosynthesis in yeasts. In the course of our study of its derivatives, we found a unique feature in their antifungal profile. D21-6076, one of these compounds, exhibited potent in vitro and in vivo antifungal activities against Candida glabrata. Interestingly, although it only weakly reduced the growth of Candida albicans in conventional media, it significantly prolonged the survival of mice infected by the pathogen. Biochemical evaluation of D21-6076 indicated that it inhibited beta-1,6-glucan synthesis of C. albicans, leading the cell wall proteins, which play a critical role in its virulence, to be released from the cell. Correspondingly, adhesion of C. albicans cells to mammalian cells and their hyphal elongation were strongly reduced by the drug treatment. The results of the experiment using an in vitro model of vaginal candidiasis showed that D21-6076 strongly inhibited the invasion process of C. albicans without a significant reduction in its growth in the medium. These evidences suggested that D21-6076 probably exhibited in vivo efficacy against C. albicans by inhibiting its invasion process.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Virus Internalization/drug effects , beta-Glucans/antagonists & inhibitors , Animals , Candida albicans/ultrastructure , Candidiasis/drug therapy , Candidiasis/microbiology , Female , Mice , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Molecular Structure , beta-Glucans/chemistry
12.
Antimicrob Agents Chemother ; 52(1): 65-76, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17938194

ABSTRACT

DC-159a is a new 8-methoxy fluoroquinolone that possesses a broad spectrum of antibacterial activity, with extended activity against gram-positive pathogens, especially streptococci and staphylococci from patients with community-acquired infections. DC-159a showed activity against Streptococcus spp. (MIC(90), 0.12 microg/ml) and inhibited the growth of 90% of levofloxacin-intermediate and -resistant strains at 1 microg/ml. The MIC 90s of DC-159a against Staphylococcus spp. were 0.5 microg/ml or less. Against quinolone- and methicillin-resistant Staphylococcus aureus strains, however, the MIC 90 of DC-159a was 8 microg/ml. DC-159a was the most active against Enterococcus spp. (MIC 90, 4 to 8 microg/ml) and was more active than the marketed fluoroquinolones, such as levofloxacin, ciprofloxacin, and moxifloxacin. The MIC 90s of DC-159a against Haemophilus influenzae, Moraxella catarrhalis, and Klebsiella pneumoniae were 0.015, 0.06, and 0.25 microg/ml, respectively. The activity of DC-159a against Mycoplasma pneumoniae was eightfold more potent than that of levofloxacin. The MICs of DC-159a against Chlamydophila pneumoniae were comparable to those of moxifloxacin, and DC-159a was more potent than levofloxacin. The MIC 90s of DC-159a against Peptostreptococcus spp., Clostridium difficile, and Bacteroides fragilis were 0.5, 4, and 2 microg/ml, respectively; and among the quinolones tested it showed the highest level of activity against anaerobic organisms. DC-159a demonstrated rapid bactericidal activity against quinolone-resistant Streptococcus pneumoniae strains both in vitro and in vivo. In vitro, DC-159a showed faster killing than moxifloxacin and garenoxacin. The bactericidal activity of DC-159a in a murine muscle infection model was revealed to be superior to that of moxifloxacin. These activities carried over to the in vivo efficacy in the murine pneumonia model, in which treatment with DC-159a led to bactericidal activity superior to those of the other agents tested.


Subject(s)
Anti-Infective Agents , Fluoroquinolones , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pneumonia, Pneumococcal/drug therapy , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Area Under Curve , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Female , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Humans , Male , Mice , Mice, Inbred CBA , Mice, Inbred ICR , Microbial Sensitivity Tests , Pneumonia, Pneumococcal/microbiology , Streptococcus pneumoniae/drug effects , Treatment Outcome
13.
Exp Cell Res ; 296(2): 245-55, 2004 Jun 10.
Article in English | MEDLINE | ID: mdl-15149854

ABSTRACT

A novel monoclonal antibody, SM/C-2.6, specific for mouse muscle satellite cells was established. SM/C-2.6 detects mononucleated cells beneath the basal lamina of skeletal muscle, and the cells co-express M-cadherin. Single fiber analyses revealed that M-cadherin+ mononucleated cells attaching to muscle fibers are stained with SM/C-2.6. SM/C-2.6+ cells, which were freshly purified by FACS from mouse skeletal muscle, became MyoD+ in vitro in proliferating medium, and the cells differentiated into desmin+ and nuclear-MyoD+ myofibers in vitro when placed under differentiation conditions. When the sorted cells were injected into mdx mouse muscles, donor cells differentiated into muscle fibers. Flow cytometric analyses of SM/C-2.6+ cells showed that the quiescent satellite cells were c-kit-, Sca-1-, CD34+, and CD45-. More, SM/C-2.6+ cells were barely included in the side population but in the main population of cells in Hoechst dye efflux assay. These results suggest that SM/C-2.6 identifies and enriches quiescent satellite cells from adult mouse muscle, and that the antibody will be useful as a powerful tool for the characterization of cellular and molecular mechanisms of satellite cell activation and proliferation.


Subject(s)
Antibodies, Monoclonal , Antigens, Surface/analysis , Muscle, Skeletal/cytology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Biomarkers/analysis , Cadherins/analysis , Cell Culture Techniques , Cell Differentiation , Cell Separation/methods , Flow Cytometry , Immunohistochemistry , Mice , Mice, Inbred Strains , Muscle Fibers, Skeletal/cytology , Satellite Cells, Skeletal Muscle/transplantation
14.
J Cell Sci ; 115(Pt 6): 1285-93, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11884527

ABSTRACT

The myogenic potential of bone marrow and fetal liver cells was examined using donor cells from green fluorescent protein (GFP)-gene transgenic mice transferred into chimeric mice. Lethally irradiated X-chromosome-linked muscular dystrophy (mdx) mice receiving bone marrow cells from the transgenic mice exhibited significant numbers of fluorescence(+) and dystrophin(+) muscle fibres. In order to compare the generating capacity of fetal liver cells with bone marrow cells in neonatal chimeras, these two cell types from the transgenic mice were injected into busulfantreated normal or mdx neonatal mice, and muscular generation in the chimeras was examined. Cardiotoxin-induced (or -uninduced, for mdx recipients) muscle regeneration in chimeras also produced fluorescence(+) muscle fibres. The muscle reconstitution efficiency of the bone marrow cells was almost equal to that of fetal liver cells. However, the myogenic cell frequency was higher in fetal livers than in bone marrow. Among the neonatal chimeras of normal recipients, several fibres expressed the fluorescence in the cardiotoxin-untreated muscle. Moreover, fluorescence(+) mononuclear cells were observed beneath the basal lamina of the cardiotoxin-untreated muscle of chimeras, a position where satellite cells are localizing. It was also found that mononuclear fluorescence(+) and desmin(+) cells were observed in the explantation cultures of untreated muscles of neonatal chimeras. The fluorescence(+) muscle fibres were generated in the second recipient mice receiving muscle single cells from the cardiotoxin-untreated neonatal chimeras. The results suggest that both bone marrow and fetal liver cells may have the potential to differentiate into muscle satellite cells and participate in muscle regeneration after muscle damage as well as in physiological muscle generation.


Subject(s)
Bone Marrow Transplantation , Cell Transplantation , Liver/cytology , Luminescent Proteins/genetics , Muscle, Skeletal/physiology , Animals , Bone Marrow Cells/physiology , Female , Green Fluorescent Proteins , Indicators and Reagents , Liver/embryology , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Mutant Strains , Mice, Transgenic , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/cytology , Radiation Chimera , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...