Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37667902

ABSTRACT

Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway. Using a cell-culture-based model of HSC activation and in vivo models of liver injury, we found that paxillin is upregulated in activated HSCs and fibrotic livers. Overexpression of paxillin (both in vitro and in vivo) led to increased ECM protein expression, and depletion of paxillin in a novel conditional mouse injury model reduced fibrosis. The mechanism by which paxillin mediated this effect appeared to be through the actin cytoskeleton, which signals to the ERK pathway and induces ECM protein production. These data highlight a novel role for paxillin in HSC biology and fibrosis.


Subject(s)
Actins , Hepatic Stellate Cells , Mice , Animals , Paxillin/genetics , Paxillin/metabolism , Actins/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Polymerization , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver/metabolism , Fibrosis , Disease Models, Animal
2.
Histochem Cell Biol ; 158(4): 325-334, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35960334

ABSTRACT

Ongoing liver injury leads to fibrosis and ultimately cirrhosis, a leading cause of death worldwide. The primary mechanism underlying the fibrogenic response is the activation of cells known as hepatic stellate cells (HSCs) which are "quiescent" in the normal liver but become "activated" after injury by transdifferentiating into extracellular matrix-secreting myofibroblasts. Since integrins (extracellular matrix binding receptors) are important mediators of HSC activation and fibrogenesis, we hypothesized that focal adhesion (FA) proteins, which link integrins to the intracellular protein machinery, may be important in the activation process. Therefore, using both an in vitro model of activation in primary rat HSCs and an in vivo model of liver injury, we examined three FA proteins: vinculin, FAK, and talin. All three proteins were significantly upregulated during HSC activation at both the messenger RNA (mRNA) and protein levels. Confocal microscopy demonstrated that the proteins had a widespread expression throughout HSCs with prominent localization at the end of actin filaments. Finally, we stimulated HSCs with the profibrotic ligands endothelin-1 (ET-1) and transforming growth factor beta (TGF-ß) and observed an increase in the size of vinculin-containing FAs and the cell area occupied by them. The data indicate that HSCs possess a broad array of FA proteins, and given their upregulation during activation, this raises the possibility that they play a role in the fibrogenic response to injury.


Subject(s)
Focal Adhesions , Hepatic Stellate Cells , Animals , Cells, Cultured , Endothelin-1/metabolism , Focal Adhesions/metabolism , Hepatic Stellate Cells/metabolism , Integrins/metabolism , Ligands , Liver/metabolism , RNA, Messenger/metabolism , Rats , Rodentia/metabolism , Talin/metabolism , Transforming Growth Factor beta/metabolism , Vinculin/metabolism
3.
Biocell ; 46(9): 2003-2007, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35734751

ABSTRACT

Hepatic stellate cells (HSCs) are the primary effector cells in liver fibrosis. In the normal liver, HSCs serve as the primary vitamin A storage cells in the body and retain a "quiescent" phenotype. However, after liver injury, they transdifferentiate to an "activated" myofibroblast-like phenotype, which is associated with dramatic upregulation of smooth muscle specific actin and extracellular matrix proteins. The result is a fibrotic, stiff, and dysfunctional liver. Therefore, understanding the molecular mechanisms that govern HSC function is essential for the development of anti-fibrotic medications. The actin cytoskeleton has emerged as a key component of the fibrogenic response in wound healing. Recent data indicate that the cytoskeleton receives signals from the cellular microenvironment and translates them to cellular function-in particular, increased type I collagen expression. Dynamic in nature, the actin cytoskeleton continuously polymerizes and depolymerizes in response to changes in the cellular microenvironment. In this viewpoint, we discuss the recent developments underlying cytoskeletal actin dynamics in liver fibrosis, including how the cellular microenvironment affects HSC function and the molecular mechanisms that regulate the actin-induced increase in collagen expression typical of activated HSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...